110.201 Linear Algebra 5th Quiz

April 22, 2005

Problem 1 Using determinant rules, find the determinant of the matrix

$$
A=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 4 & 4 & 4 \\
1 & 4 & 9 & 9 \\
1 & 4 & 9 & 16
\end{array}\right]
$$

Problem 2 True or false, with reason if true and counterexample if false:

1. If A and B are identical except in the upper-left corner, where $b_{11}=2 a_{11}$, then $\operatorname{det} B=2 \operatorname{det} A$.
2. The determinant of a matrix is the product of the pivots.
3. If A is invertible and B is singular, then $A+B$ is invertible.
4. If A is invertible and B is singular, then $A B$ is singular.

Problem 3 An invertible linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called orientation preserving if $\operatorname{det}(A)>0$, and orientation reversing otherwise.
a) Let $T_{n}(\underline{x})$ be the opposite of the identity map in \mathbb{R}^{n}, i.e.

$$
T_{n}(\underline{x})=-\underline{x} .
$$

Is T_{n} orientation preserving or orientation reversing?
b) Prove that for any invertible map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, the map $L L^{t}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is orientation preserving.
c) The linear map $\operatorname{ref}_{V}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ takes a vector \underline{x} to its reflection $\operatorname{ref}_{V}(\underline{x})$ in a two-dimensional subspace $V \subset \mathbb{R}^{3}$. Is ref_{V} orientation preserving or reversing? Does the answer depend on V ?
[Hint: Try to find a basis in which the matrix for ref_{V} is simple].

