110.201 Linear Algebra 4th Quiz

April 8, 2005

Problem 1 Find an orthogonal basis for the plane

$$
x-y+z=0
$$

viewed as a subspace of \mathbb{R}^{3}.
Solution So it is easy to see that the basis for the plane is

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

Now let's use Gram-Schmidt algorithm to get the orthogonal basis of it.

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \text { then }\left|v_{1}\right|=\sqrt{v_{1} \cdot v_{1}}=\sqrt{2}
$$

So we have

$$
u_{1}=\frac{v_{1}}{\left|v_{1}\right|}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

And
$v_{2}^{\perp}=v_{2}-\operatorname{Proj}_{u_{1}} v_{2}=v_{2}-\left(v_{2} \cdot u_{1}\right) u_{1}=v_{2}-\frac{1}{2} v_{1}=\left[\begin{array}{c}\frac{1}{2} \\ -\frac{1}{2} \\ -1\end{array}\right]$, and $\quad\left|v_{2}^{\perp}\right|=\sqrt{\frac{3}{2}}$
Therefore,

$$
u_{2}=\frac{v_{2}^{\perp}}{\left|v_{2}^{\perp}\right|}=\sqrt{\frac{2}{3}}\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
-1
\end{array}\right]
$$

So the orthogonal basis for the plan is

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \sqrt{\frac{2}{3}}\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
-1
\end{array}\right]
$$

Problem 2 Let $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ be the standard basis of \mathbb{R}^{3}. Consider the plane V spanned by \vec{e}_{1} and \vec{e}_{2}.
a. For a given vector $\vec{w}=(a, b, c) \in \mathbb{R}^{3}$, calculate the vector $\vec{u} \in V$ that minimizes the distance between V and \vec{w}, i.e. find $\vec{u} \in V$ such that

$$
\|\vec{u}-\vec{w}\| \leq\|\vec{v}-\vec{w}\| \quad \forall \vec{v} \in V
$$

Solution

$$
\vec{u}=\operatorname{Proj}_{V} w=\left[\begin{array}{l}
a \\
b \\
0
\end{array}\right]
$$

b. In the inequality above, is such a \vec{u} unique for every \vec{w} ? If so, is the assignment $\vec{w} \mapsto \vec{u}$ linear? If it is, find the matrix A of this linear transformation in the standard basis of \mathbb{R}^{3}.

Solution Yes \vec{u} is unique for every \vec{w}. and the assignment $\vec{w} \mapsto \vec{u}$ is linear. The matrix for the linear transformation is:

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Problem 3 Find the $Q-R$ factorization of the matrix

$$
A=\left(\begin{array}{lll}
4 & 6 & 10 \\
0 & 8 & 12 \\
0 & 0 & 14
\end{array}\right)
$$

Solution We can see that A is an upper triangle matrix, and all the entries in diagonal is nonzero, Therefore, the matrix is a non-degenerated matrix, so Q is I_{3} and $R=A$

