110.201 Linear Algebra 4th Quiz

April 7, 2005

Problem 1 Find an orthogonal basis for the plane

$$
x-y+z=0,
$$

viewed as a subspace of \mathbb{R}^{3}.
Problem 2 Let $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$ be the standard basis of \mathbb{R}^{3}. Consider the plane V spanned by \vec{e}_{1} and \vec{e}_{2}.
a. For a given vector $\vec{w}=(a, b, c) \in \mathbb{R}^{3}$, calculate the vector $\vec{u} \in V$ that minimizes the distance between V and \vec{w}, i.e. find $\vec{u} \in V$ such that

$$
\|\vec{u}-\vec{w}\| \leq\|\vec{v}-\vec{w}\| \quad \forall \vec{v} \in V .
$$

b. In the inequality above, is such a \vec{u} unique for every \vec{w} ? If so, is the assignment $\vec{w} \mapsto \vec{u}$ linear? If it is, find the matrix A of this linear transformation in the standard basis of \mathbb{R}^{3}.

Problem 3 Find the $Q-R$ factorization of the matrix

$$
\left(\begin{array}{lll}
4 & 6 & 10 \\
0 & 8 & 12 \\
0 & 0 & 14
\end{array}\right) .
$$

