110.201 Linear Algebra 4th Quiz

April 8, 2005

Problem 1 Let $\vec{e}_{i}, i=1,2,3,4$ be the standard basis of \mathbb{R}^{4}. Is there an orthogonal matrix A with

$$
A \vec{e}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right], A \vec{e}_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
0 \\
-\frac{1}{\sqrt{2}}
\end{array}\right], A \vec{e}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], A \vec{e}_{4}=\left[\begin{array}{l}
0 \\
0 \\
2 \\
0
\end{array}\right]
$$

or not? If so, find A, and if not, explain.

Solution By the definition of orthogonal matrix, we know

$$
\left|A e_{4}\right|=\left|e_{4}\right|
$$

But

$$
\left|A e_{4}\right|=2
$$

while

$$
\left|e_{4}\right|=1
$$

Therefore, the orthogonal matrix can not exist.

Problem 2 Find an orthonormal basis for the subspace $V \subset \mathbb{R}^{3}$ spanned by the vectors

$$
\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .
$$

Moreover, find a normal basis for the orthogonal complement of V.
Solutions We use Gram-Schmidt to do this problem.

$$
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

so,

$$
u_{1}=\frac{v_{1}}{\left|v_{1}\right|}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

then,

$$
v_{2}^{\perp}=v_{2}-\left(v_{2} \cdot u_{1}\right) u_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
-\frac{1}{2}
\end{array}\right]
$$

Therefore,

$$
u_{2}=\frac{v_{2}^{\perp}}{\left|v_{2}^{\perp}\right|}=\sqrt{\frac{2}{3}}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
-\frac{1}{2}
\end{array}\right]
$$

The orthonormal basis of V is

$$
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \sqrt{\frac{2}{3}}\left[\begin{array}{c}
\frac{1}{2} \\
1 \\
-\frac{1}{2}
\end{array}\right]
$$

About the normal basis for the orthogonal complement of V , because V is 2dimensional, so orthogonal complement must be 1-dimensional. Then let

$$
v=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

, so

$$
v \perp u_{1}, v \perp u_{2}
$$

, we have $a=-c, b=-a$ Choose

$$
a=1
$$

Then we have

$$
v=\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]
$$

, because we need normal basis, so the answer is

$$
u=\frac{v}{|v|}=\frac{1}{\sqrt{3}}\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]
$$

Problem 3 Let $\left\{\vec{\alpha}_{1}, \vec{\alpha}_{2}, \ldots, \vec{\alpha}_{k}\right\}$ be a set of mutually orthogonal vectors in \mathbb{R}^{n}.

1. Show that for any $\vec{v} \in \mathbb{R}^{n}$, the vector

$$
\vec{v}-\left(\operatorname{proj}_{\vec{\alpha}_{1}}(\vec{v})+\operatorname{proj}_{\vec{\alpha}_{2}}(\vec{v})+\cdots+\operatorname{proj}_{\vec{\alpha}_{k}}(\vec{v})\right)
$$

is orthogonal to each of the $\vec{\alpha}_{1}, \vec{\alpha}_{2}, \ldots, \vec{\alpha}_{k}$.
Solution Because $\left\{\vec{\alpha}_{1}, \vec{\alpha}_{2}, \ldots, \vec{\alpha}_{k}\right\}$ be a set of mutually orthogonal vectors in \mathbb{R}^{n}, they are actually linear independent, then they are basis of subspace V of \mathbb{R}^{n}, with dimension k . By using Gram-Schmidt, we change the basis to orhornomal basis, because they are mutually orthogonal vectors, the orthnomal basis is just

$$
\frac{\vec{\alpha}_{1}}{\left|\vec{\alpha}_{1}\right|} \cdots \frac{\vec{\alpha}_{k}}{\left|\vec{\alpha}_{k}\right|}
$$

So

$$
\vec{v}-\left(\operatorname{proj}_{\vec{\alpha}_{1}}(\vec{v})+\operatorname{proj}_{\vec{\alpha}_{2}}(\vec{v})+\cdots+\operatorname{proj}_{\vec{\alpha}_{k}}(\vec{v})\right)
$$

is a vector which is in V^{\perp}, orthogonal to each of the $\vec{\alpha}_{1}, \vec{\alpha}_{2}, \ldots, \vec{\alpha}_{k}$

1. Verify this claim for \mathbb{R}^{3} with $\overrightarrow{\alpha_{1}}=\overrightarrow{e_{1}}, \overrightarrow{\alpha_{2}}=\overrightarrow{e_{2}}$, and letting $\vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Draw a picture.

Solution

$$
\vec{v}-\left(\operatorname{proj}_{\vec{\alpha}_{1}}(\vec{v})+\operatorname{proj}_{\vec{\alpha}_{2}}(\vec{v})\right)=\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right] .
$$

