110.201 Linear Algebra 4th Quiz

April 8, 2005

Problem 1 Let $\vec{e}_{i}, i=1,2,3,4$ be the standard basis of \mathbb{R}^{4}. Is there an orthogonal matrix A with

$$
A \vec{e}_{1}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
0 \\
\frac{1}{\sqrt{2}}
\end{array}\right], A \vec{e}_{2}=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
0 \\
-\frac{1}{\sqrt{2}}
\end{array}\right], A \vec{e}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], A \vec{e}_{4}=\left[\begin{array}{l}
0 \\
0 \\
2 \\
0
\end{array}\right]
$$

or not? If so, find A, and if not, explain.
Problem 2 Find an orthonormal basis for the subspace $V \subset \mathbb{R}^{3}$ spanned by the vectors

$$
\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .
$$

Moreover, find a normal basis for the orthogonal complement of V.
Problem 3 Let $\left\{\vec{\alpha}_{1}, \vec{\alpha}_{2}, \ldots, \vec{\alpha}_{k}\right\}$ be a set of mutually orthogonal vectors in \mathbb{R}^{n}.

1. Show that for any $\vec{v} \in \mathbb{R}^{n}$, the vector

$$
\vec{v}-\left(\operatorname{proj}_{\vec{\alpha}_{1}}(\vec{v})+\operatorname{proj}_{\vec{\alpha}_{2}}(\vec{v})+\cdots+\operatorname{proj}_{\vec{\alpha}_{k}}(\vec{v})\right)
$$

is orthogonal to each of the $\vec{\alpha}_{1}, \vec{\alpha}_{2}, \ldots, \vec{\alpha}_{k}$.
2. Verify this claim for \mathbb{R}^{3} with $\overrightarrow{\alpha_{1}}=\overrightarrow{e_{1}}, \overrightarrow{\alpha_{2}}=\overrightarrow{e_{2}}$, and letting $\vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$. Draw a picture.

