110.201 Linear Algebra 4th Quiz

April 8, 2005

Problem 1 Let \vec{e}_i , i = 1, 2, 3, 4 be the standard basis of \mathbb{R}^4 . Is there an orthogonal matrix A with

$$A\vec{e}_{1} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \ A\vec{e}_{2} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ -\frac{1}{\sqrt{2}} \end{bmatrix}, \ A\vec{e}_{3} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \ A\vec{e}_{4} = \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix}$$

or not? If so, find A, and if not, explain.

Problem 2 Find an orthonormal basis for the subspace $V \subset \mathbb{R}^3$ spanned by the vectors

$$\begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}.$$

Moreover, find a normal basis for the orthogonal complement of V.

Problem 3 Let $\{\vec{\alpha}_1, \vec{\alpha}_2, \dots, \vec{\alpha}_k\}$ be a set of mutually orthogonal vectors in \mathbb{R}^n .

1. Show that for any $\vec{v} \in \mathbb{R}^n$, the vector

 $\vec{v} - (\operatorname{proj}_{\vec{\alpha}_1}(\vec{v}) + \operatorname{proj}_{\vec{\alpha}_2}(\vec{v}) + \dots + \operatorname{proj}_{\vec{\alpha}_k}(\vec{v}))$

is orthogonal to each of the $\vec{\alpha}_1, \vec{\alpha}_2, \ldots, \vec{\alpha}_k$.

2. Verify this claim for \mathbb{R}^3 with $\vec{\alpha_1} = \vec{e_1}, \vec{\alpha_2} = \vec{e_2}$, and letting $\vec{v} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$. Draw a picture.