110.201 Linear Algebra 3rd Quiz Solutions (Thursday)

March 24, 2005

Notation.

- P_n = space of polynomials, with real coefficients, of degree at most n.
- $\mathbb{R}^{m \times n}$ = space of m by n real matrices.

Problem 1 Determine whether the following spaces are isomorphic. In case they are isomorphic, define an isomorphism relating them. Justify your answer. **Solution** Spaces are isomorphic if they have the same dimension.

- 1. \mathbb{R}^2 and \mathbb{R}^4 . No.
- 2. P_5 and \mathbb{R}^5 No.
- 3. $\mathbb{R}^{2\times 3}$ and \mathbb{R}^6 Yes, under the natural identification.
- 4. P_5 and $\mathbb{R}^{2\times 3}$ Yes, under the natural identification.
- 5. $\mathbb{R}^{2\times k}$ and \mathbb{C}^k , for $k\in\mathbb{N}$. Yes, under the natural identification.

Problem 2 Let $V = \mathcal{C}^1([0,1])$ be the set of continuously differentiable functions on the closed interval [0,1]. V is a real linear space with respect to the operations of pointwise addition of functions and scalar multiplication.

(a) To prove that the functions $f(x) = \cos x$, g(x) = 2x, and $h(x) = e^x$ are linearly independent in V, consider a relation

$$c_1 \cos x + c_2 2x + c_3 e^x = 0.$$

Obviously this can only be true if $c_1 = c_2 = c_3 = 0$.

- (b) Given an integer n > 0, n + 1 linearly independent elements in V could be $\{2^x, 3^x, 5^x, \ldots\}$ and so on for the first n + 1 primes.
- (c) V is not isomorphic to \mathbb{R}^m for any positive integer m by part (b).

Problem 3 Let $T: P_2 \to P_2$ be the linear transformation defined by

$$T(p(t)) = p''(t) + 4p'(t).$$

A typical element of P_2 is $p(t) = a + bt + ct^2$, so that p''(t) + 4p'(t) = (2c + 4b) + (8c)t. So the image is isomorphic to P_1 , because we can write it in terms of new parameters, say p''(t) + 4p'(t) = x + yt, so that the rank is 2. Next, the kernal is everything that T takes to 0. So we must have x = y = 0, or equivalently, that c = b = 0. So the kernal is all polynomials of the form p(t) = a, which is isomorphic to P_0 . So the nullity is 1, and we have rank+nullity = $3 = \dim(P_2)$.