110.201 Linear Algebra 3rd Quiz

March 24, 2005

Notation.

- P_n = space of polynomials, with real coefficients, of degree at most n.
- $\mathbb{R}^{m \times n}$ = space of *m* by *n* real matrices.

Problem 1 Determine whether the following spaces are isomorphic. In case they are isomorphic, define an isomorphism relating them. Justify your answer.

- 1. \mathbb{R}^2 and \mathbb{R}^4
- 2. P_5 and \mathbb{R}^5
- 3. $\mathbb{R}^{2 \times 3}$ and \mathbb{R}^{6}
- 4. P_5 and $\mathbb{R}^{2 \times 3}$
- 5. $\mathbb{R}^{2 \times k}$ and \mathbb{C}^k , for $k \in \mathbb{N}$

Problem 2 Let $V = C^1([0,1])$ be the set of continuously differentiable functions on the closed interval [0,1]. V is a real linear space with respect to the operations of pointwise addition of functions and scalar multiplication.

- (a) Prove that the functions $f(x) = \cos x$, g(x) = 2x, and $h(x) = e^x$ are linearly independent in V.
- (b) Given an integer n > 0, find n + 1 linearly independent elements in V. Prove that your answer is correct.
- (c) Is V isomorphic to \mathbb{R}^m for some positive integer m? Why or why not?

Problem 3 Let $T: P_2 \to P_2$ be the linear transformation defined by

$$T(p(t)) = p''(t) + 4p'(t)$$

Find the image and the kernel of T as well as its rank and nullity.