110.201 Linear Algebra 3rd Quiz

March 24, 2005

Notation.

- $P_{n}=$ space of polynomials, with real coefficients, of degree at most n.
- $\mathbb{R}^{m \times n}=$ space of m by n real matrices.

Problem 1 Determine whether the following spaces are isomorphic. In case they are isomorphic, define an isomorphism relating them. Justify your answer.

1. \mathbb{R}^{2} and \mathbb{R}^{4}
2. P_{5} and \mathbb{R}^{5}
3. $\mathbb{R}^{2 \times 3}$ and \mathbb{R}^{6}
4. P_{5} and $\mathbb{R}^{2 \times 3}$
5. $\mathbb{R}^{2 \times k}$ and \mathbb{C}^{k}, for $k \in \mathbb{N}$

Problem 2 Let $V=\mathcal{C}^{1}([0,1])$ be the set of continuously differentiable functions on the closed interval $[0,1] . V$ is a real linear space with respect to the operations of pointwise addition of functions and scalar multiplication.
(a) Prove that the functions $f(x)=\cos x, g(x)=2 x$, and $h(x)=e^{x}$ are linearly independent in V.
(b) Given an integer $n>0$, find $n+1$ linearly independent elements in V. Prove that your answer is correct.
(c) Is V isomorphic to \mathbb{R}^{m} for some positive integer m ? Why or why not?

Problem 3 Let $T: P_{2} \rightarrow P_{2}$ be the linear transformation defined by

$$
T(p(t))=p^{\prime \prime}(t)+4 p^{\prime}(t) .
$$

Find the image and the kernel of T as well as its rank and nullity.

