110.201 Quiz 3 Solutions: Friday

March 28, 2005

Problem 1

1. Yes, the map is linear. It is not an isomorphism; its kernel contains, for example, $f(x)=x$, which means the map is not one-to-one
2. The map is linear; this much is obvious. It is also clearly injective, and since an injective linear map $T: U \rightarrow V$ between linear spaces of the same finite dimension is an isomorphism, the map is an isomorphism.
3. The map is not linear. $T(k A)=k^{2} T(A)$ for all real k.

Problem 2

1. There are several ways to solve this problem. One is the following: Let $\mathcal{B}_{2}=\left\{x^{4}, 2 x^{3}-1,1-x^{2}, 3 x-1,2 x\right\} \equiv\left\{f_{1}, f_{2}, f_{3}, f_{4}, f_{5}\right\}$. Observe that

$$
\begin{align*}
1 & =(3 / 2) f_{5}-f_{4} \tag{1}\\
x & =f_{5} / 2 \tag{2}\\
x^{2} & =(3 / 2) f_{5}-f_{4}-f_{3} \tag{3}\\
x^{3} & =f_{2} / 2 \tag{4}\\
x^{4} & =f_{1} \tag{5}
\end{align*}
$$

Therefore $\operatorname{span}\left\{f_{1}, f_{2}, \ldots, f_{5}\right\}=\operatorname{span}\left\{1, x, x^{2}, x^{3}, x^{4}\right\}=P_{4}$. It follows immediately that the f_{i} are a basis of P_{4}, since there are only five of them and $\operatorname{dim} P_{4}=5$. The change-of-basis matrix from \mathcal{B}_{1} to \mathcal{B}_{2} can be found immediately by writing the elements of \mathcal{B}_{2} in terms of the standard basis:

$$
\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 2 & 0 \\
1 & 0 & -1 & 0 & 0 \\
-1 & 3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
x \\
x^{2} \\
x^{3} \\
x^{4}
\end{array}\right]
$$

S is equal to the 5×5 matrix on the right side of the above equation.
2. There was a typo on this part: T should have been written as $T(p(x))=$ $p^{\prime \prime}+p^{\prime}+p$. This didn't happen, so we wound up giving full credit to everyone on this part, and bonus points to anyone who noticed the mistake on their own. Here is a solution to the problem, properly stated. Immediately note that we can write $T=I+Q$, where I is the identity transformation and $Q(p)=p^{\prime \prime}+p^{\prime}$. We know what the matrix for I looks like, so we'll just work with Q. Let's compute the action of Q on the f_{i}, using the change of basis matrix above:

$$
\begin{align*}
& Q\left(f_{1}\right)=2 f_{2}-12\left(f_{3}+f_{4}\right)+18 f_{5} \tag{6}\\
& Q\left(f_{2}\right)=-6\left(f_{3}+f_{4}\right)+21 f_{5} \tag{7}\\
& Q\left(f_{3}\right)=2 f_{4}-3 f_{5} \tag{8}\\
& Q\left(f_{4}\right)=-3 f_{4}+9 f_{5} / 2 \tag{9}\\
& Q\left(f_{5}\right)=-2 f_{4}+3 f_{5} \tag{10}
\end{align*}
$$

Therefore the matrix for T is I_{5} plus the matrix of Q in this basis, namely

$$
\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 & 0 \\
-12 & -6 & 1 & 0 & 0 \\
-12 & -6 & 2 & -2 & -2 \\
18 & 21 & -3 & 9 / 2 & 4
\end{array}\right]
$$

Problem 3 Writing out the equation defining S by performing the indicated matrix multiplication:

$$
\left[\begin{array}{cc}
x & y \\
0 & z
\end{array}\right] \in S \Longleftrightarrow 2 x-3 y+4 z=0
$$

So, letting $x=s, y=t, z=\frac{2 s-3 t}{4}$, it is clear that $\operatorname{dim} S=2$, and that a basis for S is given by

$$
A_{1}=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 / 2
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
0 & 1 \\
0 & -3 / 4
\end{array}\right]
$$

To find the dimension of S, you could also have just observed that the equation defining S is the equation of a plane in \mathbb{R}^{3}.
There are a couple of ways to do the second part. The first is to just mess around until you pull an answer out of a hat. The second is a bit sneakier and involves the observation made before: There is an isomorphism of S onto the plane P in \mathbb{R}^{3} defined by $2 x-3 y+4 z=0$, namely

$$
\left[\begin{array}{ll}
x & y \\
0 & z
\end{array}\right] \rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] .
$$

Therefore, to find a basis of S such that A has the given representation in that basis, we can just find a basis of P such that $\vec{u}=\left[\begin{array}{ccc}2 & 0 & -1\end{array}\right]$ has the representation. Then just use the above isomorphism to translate that basis back into matrix form. To get a basis like that, pick two vectors \vec{v}_{1}, \vec{v}_{2} in \mathbb{R}^{3} that are (1) not normal to P and (2) $\vec{u}=2 \vec{v}_{1}+3 \vec{v}_{2}$. Take the projections of \vec{v}_{1} and \vec{v}_{2} onto P, and you get what you need. Take $\vec{v}_{1}=\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]$ and $\vec{v}_{2}=\left[\begin{array}{lll}0 & 0 & -1 / 3\end{array}\right]$. Then their projections onto P and the corresponding basis matrices are

$$
\begin{gathered}
\operatorname{proj}_{P} \vec{v}_{1}=\frac{1}{15}\left[\begin{array}{c}
13 \\
3 \\
-4
\end{array}\right] \mapsto \frac{1}{15}\left[\begin{array}{cc}
13 & 3 \\
0 & -4
\end{array}\right] \\
\operatorname{proj}_{P} \vec{v}_{2}=\frac{1}{45}\left[\begin{array}{c}
2 \\
-3 \\
-9
\end{array}\right] \mapsto \frac{1}{45}\left[\begin{array}{ll}
4 & -6 \\
0 & -7
\end{array}\right]
\end{gathered}
$$

One quickly checks that the two matrices above have the required properties.

