110.201 Quiz 3 Solutions: Friday

March 28, 2005

Problem 1

- 1. Yes, the map is linear. It is not an isomorphism; its kernel contains, for example, f(x) = x, which means the map is not one-to-one
- 2. The map is linear; this much is obvious. It is also clearly injective, and since an injective linear map $T: U \to V$ between linear spaces of the same finite dimension is an isomorphism, the map is an isomorphism.
- 3. The map is not linear. $T(kA) = k^2 T(A)$ for all real k.

Problem 2

1. There are several ways to solve this problem. One is the following: Let $\mathcal{B}_2 = \{x^4, 2x^3 - 1, 1 - x^2, 3x - 1, 2x\} \equiv \{f_1, f_2, f_3, f_4, f_5\}$. Observe that

$$1 = (3/2)f_5 - f_4 \tag{1}$$

$$x = f_5/2 \tag{2}$$

$$x^2 = (3/2)f_5 - f_4 - f_3 \tag{3}$$

$$x^3 = f_2/2$$
 (4)

$$x^4 = f_1 \tag{5}$$

Therefore span{ f_1, f_2, \ldots, f_5 } = span{ $1, x, x^2, x^3, x^4$ } = P_4 . It follows immediately that the f_i are a basis of P_4 , since there are only five of them and dim P_4 = 5. The change-of-basis matrix from \mathcal{B}_1 to \mathcal{B}_2 can be found immediately by writing the elements of \mathcal{B}_2 in terms of the standard basis:

$\lceil f_1 \rceil$		0	0	0	0	1]	[1]
f_2		0	0	0	2	0	x
f_3	=	1	0	-1	0	0	x^2
f_4		-1	3	0	0	0	x^3
f_5		0	2	0	0	0	x^4

S is equal to the 5×5 matrix on the right side of the above equation.

2. There was a typo on this part: T should have been written as T(p(x)) = p'' + p' + p. This didn't happen, so we wound up giving full credit to everyone on this part, and bonus points to anyone who noticed the mistake on their own. Here is a solution to the problem, properly stated. Immediately note that we can write T = I + Q, where I is the identity transformation and Q(p) = p'' + p'. We know what the matrix for I looks like, so we'll just work with Q. Let's compute the action of Q on the f_i , using the change of basis matrix above:

$$Q(f_1) = 2f_2 - 12(f_3 + f_4) + 18f_5 \tag{6}$$

$$Q(f_2) = -6(f_3 + f_4) + 21f_5 \tag{7}$$

$$Q(f_3) = 2f_4 - 3f_5 \tag{8}$$

$$Q(f_4) = -3f_4 + 9f_5/2 \tag{9}$$

$$Q(f_5) = -2f_4 + 3f_5 \tag{10}$$

Therefore the matrix for T is I_5 plus the matrix of Q in this basis, namely

[1	. 0	0	0	0
2	1	0	0	0
-1	12 - 6	1	0	0
_1	12 - 6	2	-2	-2
L 18	8 21	-3	9/2	4

Problem 3 Writing out the equation defining S by performing the indicated matrix multiplication:

$$\begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \in S \iff 2x - 3y + 4z = 0$$

So, letting $x = s, y = t, z = \frac{2s-3t}{4}$, it is clear that dim S = 2, and that a basis for S is given by

$$A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1/2 \end{bmatrix}, \quad A_2 = \begin{bmatrix} 0 & 1 \\ 0 & -3/4 \end{bmatrix}$$

To find the dimension of S, you could also have just observed that the equation defining S is the equation of a plane in \mathbb{R}^3 .

There are a couple of ways to do the second part. The first is to just mess around until you pull an answer out of a hat. The second is a bit sneakier and involves the observation made before: There is an isomorphism of Sonto the plane P in \mathbb{R}^3 defined by 2x - 3y + 4z = 0, namely

$$\begin{bmatrix} x & y \\ 0 & z \end{bmatrix} \to \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$$

Therefore, to find a basis of S such that A has the given representation in that basis, we can just find a basis of P such that $\vec{u} = \begin{bmatrix} 2 & 0 & -1 \end{bmatrix}$ has the representation. Then just use the above isomorphism to translate that basis back into matrix form. To get a basis like that, pick two vectors \vec{v}_1, \vec{v}_2 in \mathbb{R}^3 that are (1) not normal to P and (2) $\vec{u} = 2\vec{v}_1 + 3\vec{v}_2$. Take the projections of \vec{v}_1 and \vec{v}_2 onto P, and you get what you need. Take $\vec{v}_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 0 & 0 & -1/3 \end{bmatrix}$. Then their projections onto P and the corresponding basis matrices are

$$\operatorname{proj}_{P} \vec{v}_{1} = \frac{1}{15} \begin{bmatrix} 13\\3\\-4 \end{bmatrix} \mapsto \frac{1}{15} \begin{bmatrix} 13&3\\0&-4 \end{bmatrix}$$
$$\operatorname{proj}_{P} \vec{v}_{2} = \frac{1}{45} \begin{bmatrix} 2\\-3\\-9 \end{bmatrix} \mapsto \frac{1}{45} \begin{bmatrix} 4&-6\\0&-7 \end{bmatrix}$$

One quickly checks that the two matrices above have the required properties.