# 110.201 Linear Algebra 3rd Quiz 

March 25, 2005

## Notation.

- $P_{n}=$ space of polynomials, with real coefficients, of degree at most $n$.
- $\mathbb{R}^{m \times n}=$ space of $m$ by $n$ real matrices.

Problem 1 Find out which of the following transformations are linear and for those that are linear, determine whether they are isomorphisms.

1. $T: P_{2} \rightarrow \mathbb{R}, \quad T(f(t))=f(0)$.
2. $T: \mathbb{C} \rightarrow \mathbb{C}, \quad T(x+i y)=x-i y$.
3. $T: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}, \quad T(M)=M^{2}$.

Problem 2 Consider the (standard) basis $\mathcal{B}_{1}=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ of $P_{4}$.

1. Prove that the set $\mathcal{B}_{2}=\left\{x^{4}, 2 x^{3}, 1-x^{2}, 3 x-1,2 x\right\}$ is a basis of $P_{4}$. Find the change of basis matrix $S$ from $\mathcal{B}_{1}$ to $\mathcal{B}_{2}$.
2. Let $T: P_{4} \rightarrow P_{4}$ be the linear transformation defined by

$$
T(p(x))=p^{\prime \prime}(x)+p^{\prime}(x)+p(x) .
$$

Find the matrix of $T$ with respect to $\mathcal{B}_{2}$

Problem 3 Given the subspace of $\mathbb{R}^{2 \times 2}$

$$
S=\left\{\left[\begin{array}{ll}
x & y \\
0 & z
\end{array}\right] \left\lvert\,\left[\begin{array}{cc}
1 & -\frac{4}{3}
\end{array}\right]\left[\begin{array}{ll}
x & y \\
0 & z
\end{array}\right]\left[\begin{array}{c}
2 \\
-3
\end{array}\right]=0\right.\right\}
$$

find its dimension and a basis $\mathcal{B}$ of S such that $[A]_{\mathcal{B}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$, for $A=\left[\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right]$.

