110.201 Quiz 2 Solutions

February 28, 2005

Problem 1 The first part's answer is

$$
L=\{t \vec{v}: t \in \mathbb{R}\}
$$

To find $\operatorname{proj}_{L} \vec{w}$ use the formula

$$
\operatorname{proj}_{L} \vec{w}=\frac{1}{\|\vec{v}\|^{2}}(\vec{w} \cdot \vec{v}) \vec{v}=\frac{31}{49}\left[\begin{array}{l}
6 \\
2 \\
3
\end{array}\right]
$$

Problem 2 We first reduce A to rref:

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccc}
2 & 1 & 0 \\
1 & -1 & 3 \\
-1 & 0 & 1
\end{array}\right] \xrightarrow[(I I I)+(I I)^{*}]{ }\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & -1 & 4 \\
-1 & 0 & 1
\end{array}\right] \xrightarrow[2(I I I)^{*}+(I)]{ } \xrightarrow{-2(I I I)+(I I)^{*}}\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & -3 & 1 \\
0 & -1 & 0 \\
0 & 1 & 2
\end{array}\right] \xrightarrow[(1 / 3)(I I)+(I)^{*},(I I I)^{*}]{ }\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 2
\end{array}\right]} \\
\\
\\
-(1 / 3)(I I)^{*},(1 / 2)\left((I I I)^{*},(I)^{*}\right.
\end{array}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right)
$$

Since A can be rowreduced to the 3 by 3 identity matrix, it is invertible. Now perform these row operations on the three-dimensional identity matrix to obtain A^{-1} :

$$
A^{-1}=\left[\begin{array}{ccc}
1 / 6 & 1 / 6 & -1 / 2 \\
2 / 3 & -1 / 3 & 1 \\
1 / 6 & 1 / 6 & 1 / 2
\end{array}\right]
$$

Problem $3 V$ is the plane orthogonal to the unit vector $\vec{v}=1 / \sqrt{6}[2,-1,1]$. To find a linear transformation $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ with $\operatorname{Ker}\left(T_{A}\right)=V$, just take the dot product with \vec{v} :

$$
T_{A}(\vec{w})=\vec{v} \cdot \vec{w}
$$

The matrix for T_{A} is

$$
[2 / \sqrt{6}-1 / \sqrt{6} 1 / \sqrt{6}]
$$

To find a linear transformation $T_{B}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ with Image $\left(T_{B}\right)=V$, find two linearly independent vectors orthogonal to \vec{v}; they will span V. Two such vectors are

$$
\vec{w}_{1}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \quad \vec{w}_{2}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] .
$$

The image of \mathbb{R}^{2} under the 3 by 2 matrix

$$
\left[\begin{array}{ll}
\vec{w}_{1} & \vec{w}_{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 2 \\
1 & 0
\end{array}\right]
$$

is then equal to V.
Alternatively one could have used the projections onto V and \vec{v}.

