110.201 Quiz 2 Solutions

February 28, 2005

Problem 1 The first part's answer is

$$L = \{t\vec{v} : t \in \mathbb{R}\}$$

To find $\operatorname{proj}_L \vec{w}$ use the formula

$$\mathrm{proj}_L \vec{w} = \frac{1}{\|\vec{v}\|^2} (\vec{w} \cdot \vec{v}) \vec{v} = \frac{31}{49} \begin{bmatrix} 6\\2\\3 \end{bmatrix}$$

Problem 2 We first reduce A to rref:

$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & 3 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{(III) + (II)^{*}} \begin{bmatrix} 2 & 1 & 0 \\ 0 & -1 & 4 \\ -1 & 0 & 1 \end{bmatrix} \xrightarrow{2(III)^{*} + (I)} \begin{bmatrix} 2 & 1 & 0 \\ 0 & -1 & 4 \\ 0 & 1 & 2 \end{bmatrix}$$
$$\xrightarrow{-2(III) + (II)^{*}} \begin{bmatrix} 2 & 1 & 0 \\ 0 & -3 & 0 \\ 0 & 1 & 2 \end{bmatrix} \xrightarrow{(I/3)(II) + (I)^{*}, (III)^{*}} \begin{bmatrix} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
$$\xrightarrow{-(1/3)(II)^{*}, (1/2)((III)^{*}, (I)^{*})} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since A can be row reduced to the 3 by 3 identity matrix, it is invertible. Now perform these row operations on the three-dimensional identity matrix to obtain A^{-1} :

$$A^{-1} = \begin{bmatrix} 1/6 & 1/6 & -1/2 \\ 2/3 & -1/3 & 1 \\ 1/6 & 1/6 & 1/2 \end{bmatrix}$$

Problem 3 V is the plane orthogonal to the unit vector $\vec{v} = 1/\sqrt{6}[2, -1, 1]$. To find a linear transformation $T_A : \mathbb{R}^3 \to \mathbb{R}$ with $\text{Ker}(T_A) = V$, just take the dot product with \vec{v} :

$$T_A(\vec{w}) = \vec{v} \cdot \vec{w}$$

The matrix for T_A is

$$[2/\sqrt{6} - 1/\sqrt{6} \ 1/\sqrt{6}]$$

To find a linear transformation $T_B : \mathbb{R}^2 \to \mathbb{R}^3$ with $\text{Image}(T_B) = V$, find two linearly independent vectors orthogonal to \vec{v} ; they will span V. Two such vectors are

$$\vec{w}_1 = \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \quad \vec{w}_2 = \begin{bmatrix} 1\\2\\0 \end{bmatrix}.$$

The image of \mathbb{R}^2 under the 3 by 2 matrix

$$\begin{bmatrix} \vec{w_1} \ \vec{w_2} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 2 \\ 1 & 0 \end{bmatrix}$$

is then equal to V.

Alternatively one could have used the projections onto V and \vec{v} .