Quiz 2 Solutions

February 28, 2005

Problem 1 For the first part: the equation of the plane orthogonal to a given $\vec{v} \in \mathbb{R}^{3}$ is $\vec{x} \cdot \vec{v}=0$. Applying this formula to our problem and writing $\vec{x}=(x, y, z)$, we get

$$
x+2 y+3 z=0 .
$$

For the second part, we have a formula for the reflection of \vec{w} in a plane P :

$$
\operatorname{ref}_{P}(\vec{w})=\vec{w}-2 \vec{w}_{\perp}
$$

where \vec{w}_{\perp} is the component of \vec{w} perpendicular to P. But this is just

$$
\vec{w}-2(\vec{w} \cdot \hat{v}) \hat{v},
$$

where \hat{v} is a unit vector normal to P. Applying this formula with $\hat{v}=$ $\frac{1}{\sqrt{14}}[123], \vec{w}=[456]$, we get

$$
\operatorname{ref}_{P}(\vec{w})=\frac{1}{7}\left[\begin{array}{l}
-2 \\
-25 \\
-48
\end{array}\right]
$$

Problem 2 First we find the elementary row operations that reduce A to reduced row echelon form (if possible):

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & 1 \\
2 & -1 & 0 \\
0 & 1 & 1
\end{array}\right] \xrightarrow[-2(I)+(I I)^{*}]{ }\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & -1 & -2 \\
0 & 1 & 1
\end{array}\right] \xrightarrow[(I I)+(I I I)^{*}]{ }\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & -1 & -2 \\
0 & 0 & -1
\end{array}\right]} \\
& -2(I I I)+(I I)^{*},(I I I)+(I)^{*}
\end{aligned}\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] \xrightarrow[-(I I)^{*},-(I I I)^{*}]{ }\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-
$$

Since A can be reduced to the identity matrix by elementary row operations, A is invertible. Applying these same row operations to the 3×3 identity matrix gives us A^{-1} :

$$
A^{-1}=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
-2 & 1 & 2 \\
2 & -1 & -1
\end{array}\right]
$$

Problem 3 Let $\vec{v}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. Note that the plane P defined by $x+z=0$ is just the plane normal to \vec{v}. The problem demands a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with kernel \vec{v} and image P. Such a transformation T is given by $T(\vec{x})=\operatorname{proj}_{P} \vec{x}$. To see this, note that \vec{v}, being normal to P, is in the kernel of T. Moreover, $T\left(\mathbb{R}^{3}\right)=P$ by definition. So this is the transformation we're looking for. To find the matrix of T, write

$$
\begin{aligned}
\operatorname{proj}_{P} \vec{x} & =\vec{x}-\vec{x}_{\perp}=\vec{x}-(\vec{x} \cdot \vec{v}) \vec{v} \\
& =\left(I-\operatorname{proj}_{\vec{v}}\right) \vec{x} .
\end{aligned}
$$

The matrix of $\operatorname{proj}_{\vec{v}}$ is (from HW 3)

$$
B=\left[\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
0 & 0 & 0 \\
1 / 2 & 0 & 1 / 2
\end{array}\right]
$$

Thus the matrix of T is $I-B$, or

$$
\left[\begin{array}{ccc}
1 / 2 & 0 & -1 / 2 \\
0 & 1 & 0 \\
-1 / 2 & 0 & 1 / 2
\end{array}\right]
$$

