THE JOHNS HOPKINS UNIVERSITY Faculty of Arts and Sciences
 FIRST TEST - SPRING SESSION 2005
 110.201 - LINEAR ALGEBRA.

Examiner: Professor C. Consani
Duration: 50 minutes, March 9, 2005

No calculators allowed.

Total Marks $=100$

1. Let A be a $(m \times n)$-matrix of rank r. Suppose $A \underline{X}=\underline{b}$ has no solution for some right sides \underline{b} and infinitely many solutions for some other right sides \underline{b}.
(a) [5 marks] Decide whether the nullspace of A contains only the zero vector and why.

Sol. If the nullspace of $A(N(A))$ contains only the zero vector, then $\operatorname{dim} N(A)=$ $n-r=0$, i.e. $n=r($ with $n \leq m)$. But then, the system could not have infinitely many solutions for some \underline{b}.
(b) [5 marks] Decide whether the column space of A is all of \mathbb{R}^{m} and why.

Sol. If the column space of A were \mathbb{R}^{m}, then the system would have always a solution, but this is in contradiction with the hypothesis that for some \underline{b} the system has no solution.
(c) [5 marks] For this matrix A find all true relations between the numbers r, m and n.

Sol. It is always true that $r \leq m$ and $r \leq n$. Moreover, under the given hypothesis, we must have $r<m$ (otherwise there would not be right sides \underline{b} such that $A \underline{X}=\underline{b}$ has no solution) and $r<n$ (otherwise there would not be any \underline{b} such that $A \underline{X}=\underline{b}$ has infinitely many solutions).
(d) [5 marks] Can there be a right side \underline{b} for which $A \underline{X}=\underline{b}$ has exactly one solution? Why or why not?

Sol. No, because this condition would require $n=r$.
2. (a) [5 marks] Are the vectors $\underline{v}_{1}=\left[\begin{array}{c}-2 \\ -1 \\ 3 \\ 4\end{array}\right]$ and $\underline{v}_{2}=\left[\begin{array}{c}-8 \\ 2 \\ -2 \\ 1\end{array}\right]$ linearly independent? Are these vectors perpendicular to each other? Explain your answers.

Sol. Yes, the 2 vectors are linearly independent: in fact none of the two is a scalar multiple of the other one.
No, the 2 vectors are not perpendicular as $v_{1} \cdot v_{2}=12 \neq 0$.
(b) $\left[\mathbf{1 0}\right.$ marks] Do the vectors $\underline{w}_{1}=\left[\begin{array}{c}-2 \\ -1 \\ 3 \\ 4\end{array}\right], \underline{w}_{2}=\left[\begin{array}{l}8 \\ 2 \\ 2 \\ 1\end{array}\right], \underline{w}_{3}=\left[\begin{array}{c}10 \\ 1 \\ 1 \\ 6\end{array}\right], \underline{w}_{4}=\left[\begin{array}{c}-2 \\ -1 \\ 3 \\ 4\end{array}\right]$ define a basis of \mathbb{R}^{4} ? Explain.
Sol. No, the vectors $\underline{w}_{1}, \underline{w}_{2}, \underline{w}_{3}$ and \underline{w}_{4} are not linearly independent. For example: $c_{1} \underline{w}_{1}+c_{2} \underline{w}_{2}+c_{3} \underline{w}_{3}+c_{4} \underline{w}_{4}=\underline{0}$ for $\underline{c}=\left[\begin{array}{c}1 \\ 0 \\ 0 \\ -1\end{array}\right]$.
(c) $\left[\mathbf{5}\right.$ marks] Do the vectors $\underline{t}_{1}=\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right], \underline{t}_{2}=\left[\begin{array}{c}-1 \\ -1 \\ 1 \\ 0\end{array}\right], \underline{t}_{3}=\left[\begin{array}{c}-4 \\ -2 \\ 2 \\ 1\end{array}\right]$ define a basis of the subspace defined by (the set of solutions of) the 3-dimensional plane $x_{1}+2 x_{2}+3 x_{3}+6 x_{4}=0$ in \mathbb{R}^{4} ? Explain.

Sol. No, the vectors are not a basis for the given subspace. The vectors are linearly independent, however these vectors do not span the plane because \underline{t}_{3} is not in the plane.
(d) [10 marks] Find $q \in \mathbb{R}$ such that the vectors

$$
\left[\begin{array}{l}
1 \\
4 \\
6
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
12 \\
10
\end{array}\right],\left[\begin{array}{l}
q \\
3 \\
1
\end{array}\right]
$$

do not $\operatorname{span} \mathbb{R}^{3}$. Is this q unique? Why?
Sol. Set up the vectors as columns of a matrix and perform Gaussian elimination

$$
\left[\begin{array}{cccc}
1 & 0 & -1 & q \\
4 & 2 & 12 & 3 \\
6 & 2 & 10 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & -1 & q \\
0 & 2 & 16 & 3-4 q \\
0 & 2 & 16 & 1-6 q
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & 0 & -1 & q \\
0 & 2 & 16 & 3-4 q \\
0 & 0 & 0 & -2-2 q
\end{array}\right]
$$

Need: $-2-2 q=0$ in the last row so that the number of non-zero pivots $=r<3$ (r is the dimension of the column space). For $q=-1$, the four vectors span an $r=2$ dimensional subspace of \mathbb{R}^{3}. Evidently, this value of q is unique, as it is the solution of a polynomial equation of degree 1 .
3. (a) [5 marks] Let $\underline{u}=\left[\begin{array}{l}0 \\ 2 \\ 4 \\ 6\end{array}\right]$ and $\underline{v}=\left[\begin{array}{l}1 \\ 3 \\ 5 \\ 7\end{array}\right]$ be vectors in \mathbb{R}^{4}. Suppose we have a matrix B such that $B \underline{X}=\underline{u}$ has no solution and $B \underline{X}=\underline{v}$ has no solution, for $\underline{X}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2}$.
Is it also possible that $B \underline{X}=\underline{u}+\underline{v}$ has infinitely many solutions? If 'yes' give a matrix B that satisfies these conditions. If 'no' briefly state why the matrix B cannot exist.

Sol. Yes. Let consider the following example:

$$
\left[\begin{array}{cc}
1 & 1 \\
5 & 5 \\
9 & 9 \\
13 & 13
\end{array}\right] \underline{X}=\left[\begin{array}{c}
1 \\
5 \\
9 \\
13
\end{array}\right], \quad\left[\begin{array}{c}
1 \\
5 \\
9 \\
13
\end{array}\right]=\underline{u}+\underline{v} .
$$

This system has infinitely many solutions: $\underline{X}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \underline{X}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \underline{X}_{3}=\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2}\end{array}\right]$, $\underline{X}_{4}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$, etc.
(b) [5 marks] Can you find a linear transformation T_{A} such that Image (A) is the subspace in \mathbb{R}^{3} described by the (set of common solutions of the) equations $x=z, y=2 x$ and such that $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is a basis of $\operatorname{Ker}(A)$? If 'yes' give the matrix A, if 'no' explain why this matrix cannot exist.
Sol. No. If the matrix A existed, then A would be a $m=3$ by $n=3$ matrix. By the Rank-Nullity Theorem, the dimension of the column space (r) plus the dimension of the nullspace $(n-r)$ must equal n. However, for the assigned column space and nullspace we find that $1+1 \neq 3$.
(c) [10 marks] The following information is known about a matrix B

$$
B\left[\begin{array}{c}
1 \\
-2 \\
3 \\
1
\end{array}\right]=\left[\begin{array}{c}
-6 \\
3
\end{array}\right] \quad \text { and } \quad B\left[\begin{array}{c}
3 \\
-1 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-18 \\
9
\end{array}\right]
$$

In fact, for $\underline{X}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right] \in \mathbb{R}^{4}, B \underline{X}$ is always some multiple of $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. What is the dimension of the nullspace of B ? Give a non-zero solution to $B \underline{X}=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
Sol. The column space (always some multiple of $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$) is a 1-dimensional subspace in \mathbb{R}^{2}; the dimension of the column space is $r=1$. Note that the matrix B maps vectors in \mathbb{R}^{4} to vectors in \mathbb{R}^{2}; then B is a $m=2$ by $n=4$ matrix.
Dimension of the nullspace of $B=n-r=4-1=3$.
Moreover, note that
$-3 B\left[\begin{array}{c}1 \\ -2 \\ 3 \\ 1\end{array}\right]+B\left[\begin{array}{c}3 \\ -1 \\ 1 \\ 2\end{array}\right]=B\left(-3\left[\begin{array}{c}1 \\ -2 \\ 3 \\ 1\end{array}\right]\right)+B\left(\left[\begin{array}{c}3 \\ -1 \\ 1 \\ 2\end{array}\right]\right)=B\left(-3\left[\begin{array}{c}1 \\ -2 \\ 3 \\ 1\end{array}\right]+\left[\begin{array}{c}3 \\ -1 \\ 1 \\ 2\end{array}\right]\right)=\left[\begin{array}{c}18 \\ -9\end{array}\right]+\left[\begin{array}{c}-18 \\ 9\end{array}\right]=\left[\begin{array}{c}0 \\ 0\end{array}\right]$
Therefore, the vector $\underline{X}_{1}=\left[\begin{array}{c}0 \\ 5 \\ -8 \\ -1\end{array}\right]$ is a solution of the system $B \underline{X}=\underline{0}$.
(d) $[\mathbf{1 0}$ marks $]$ Give a basis for the column space of $B=\left[\begin{array}{cccc}1 & 5 & 0 & -3 \\ 2 & 10 & 1 & -4 \\ -1 & -5 & 1 & 5\end{array}\right]$.

Sol. By performing the Gaussian elimination we see that the pivot columns in B are: column 1 and column 3. Hence, $\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ form a basis for the column space of B.
4. [20 marks] Let V be the plane in \mathbb{R}^{3} defined by (the set of solutions of) the equation $x-y+z=0$. Find the matrix B of the linear transformation $T:(V, \mathcal{B}) \rightarrow(V, \mathcal{B})$, with respect to the basis $\mathcal{B}=\left\{\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}$ of V, which describes the orthogonal projection onto the line spanned by the vector $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
Sol. A unit direction vector of the line is $\underline{u}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$. Let $\underline{v}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ and $\underline{v}_{2}=$ $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$. The orthogonal projection onto the line with direction vector \underline{u} is defined by:

$$
T(\underline{x})=(\underline{x} \cdot \underline{u}) \underline{u}, \quad \underline{x} \in V .
$$

In particular, we have

$$
T\left(\underline{v}_{1}\right)=\left(\underline{v}_{1} \cdot \underline{u}\right) \underline{u}=\frac{1}{2}\left(\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right)\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\frac{1}{2} \underline{v}_{1}+\frac{1}{2} \underline{v}_{2}, \quad\left[T\left(\underline{v}_{1}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right] .
$$

Similarly,
$T\left(\underline{v}_{2}\right)=\left(\underline{v}_{2} \cdot \underline{u}\right) \underline{u}=\frac{1}{2}\left(\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right)\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=\frac{1}{2} \underline{v}_{1}+\frac{1}{2} \underline{v}_{2}, \quad\left[T\left(\underline{v}_{2}\right)\right]_{\mathcal{B}}=\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2}\end{array}\right]$.
It follows that $B=\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]$.

