Midterm1 - 201, Fall 2016
 Instructor: Wenjing Liao

- Please keep your own work covered up as much as possible during the exam so that others will not be tempted or distracted.
- No notes, books or calculators are allowed.
- Read each problem carefully. Show all work for full credit.
- Make sure you have 10 pages, including the cover page (Page $1)$ and the score page (Page 2).

Name:

\qquad

Section:

\qquad
I would not assist anybody else in the completion of this exam. I would not copy answers from others. I would not have another student take the exam for me.

Signature: \qquad

(1)	
(2)	
(3)	
(4)	
(5)	
(6)	
Total	

Problem 1: (20 points):

Write down T if the following statement is true and F if the statement is false. (2 points each)

Example: $\mathbb{F} 10$ vectors in \mathbb{R}^{9} can be linearly independent.
(1) The transformation $T(A)=A^{T}$ from $\mathbb{R}^{5 \times 5}$ to $\mathbb{R}^{5 \times 5}$ is an isomorphism.
(2) ___ Consider the linear transformation:

$$
T(\vec{x})=\operatorname{det}\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n-1}
\end{array} \vec{x}\right]
$$

from \mathbb{R}^{n} to \mathbb{R}, where $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n-1}$ are linearly independent vectors in \mathbb{R}^{n}. The nullity of T is equal to n.
(3) ___ Determinant of the following matrix is necessarily 0 .

$$
\left[\begin{array}{llll}
a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} & a_{1} b_{4} \\
a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} & a_{2} b_{4} \\
a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3} & a_{3} b_{4} \\
a_{4} b_{1} & a_{4} b_{2} & a_{4} b_{3} & a_{4} b_{4}
\end{array}\right]
$$

(4) \qquad The dimension of W^{\perp} is equal to 2 , where

$$
W=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
-1 \\
-2 \\
-3 \\
-4
\end{array}\right]\right)
$$

(5) ___ The following matrix is an orthogonal matrix.

$$
\left[\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & 2 \\
2 & 1 & -2
\end{array}\right]
$$

(6) ___ If the $n \times n$ matrices A and B are orthogonal matrices, $A+B$ must be orthogonal as well.
(7) Consider an orthonormal basis $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}$ in \mathbb{R}^{n}. The least-squares solution of the system $A \vec{x}=\vec{u}_{n}$ where $A=\left[\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n-1}\right]$ is $\vec{x}=\overrightarrow{0}$.
(8) $\langle f, g\rangle=f(1) g(1)+f(2) g(2)$ is an inner product in P_{1}.
(9) \qquad Let A be an $n \times n$ matrix. If λ is an eigenvalue of A, then $\lambda^{2}+\lambda+1$ is an eigenvalue of the matrix $A^{2}+A+I_{n}$.
(10) There is an orthogonal transformation T from \mathbb{R}^{3} to \mathbb{R}^{3} such that

$$
T\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
2
\end{array}\right] \quad \text { and } \quad T\left[\begin{array}{c}
-3 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]
$$

Problem 2 (12 points):

Let

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

(1) Find the eigenvalues of A. (5 points)
(2) Find the eigenvectors of A. (7 points)

Problem 3 (16 points):

Let

$$
A=\left[\begin{array}{cc}
-1 & 1 \\
1 & 3 \\
1 & 3 \\
-1 & 1
\end{array}\right]
$$

(1) Find the QR factorization of A. (10 points)
(2) Let $V=\operatorname{image}(A)$. Compute $\operatorname{Proj}_{V}\left[\begin{array}{l}4 \\ 3 \\ 2 \\ 1\end{array}\right] \cdot(6$ points $)$

Problem 4 (20 points, 5 points each):

Let $A=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$ and $B=\left(\begin{array}{lll}a & d & g \\ b & e & h \\ 1 & 2 & 3\end{array}\right)$ such that $\operatorname{det} A=2$ and $\operatorname{det} B=3$.
(1) Compute $\operatorname{det}\left(\begin{array}{cccc}0 & 0 & 1 & -2 \\ a & b & c & 1 \\ d & e & f & 2 \\ g & h & i & 3\end{array}\right)$.
(2) Suppose $\vec{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$ is the solution of $A \vec{x}=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$. Evaluate x_{3}.
(3) Let $C=\left(A B A^{-1}\right)^{2016}$. Compute $\operatorname{det} C$.
(4) Compute $\operatorname{det} E$, where E is the reduced row echelon form of B.

Problem 5 (20 points):

Consider the linear transformation $T: P_{3} \rightarrow P_{3}$ such that
$T\left(a+b t+c t^{2}+d t^{3}\right)=a+d t+(b+c) t^{2}+(a+d) t^{3}$.
(1) Given the basis $\mathfrak{B}=\left\{1, t, t^{2}, t^{3}\right\}$ in P_{3}. Find the \mathfrak{B}-matrix of T with respect to the basis \mathfrak{B}. (8 points)
(2) Find a basis of the kernel of T. (6 points)
(3) Find a basis of the image of T. (6 points)

Problem 6 (12 points):

Let \vec{e} be a unit vector in \mathbb{R}^{3}. Consider the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $T(\vec{x})=2(\vec{e} \cdot \vec{x}) \vec{e}-\vec{x}$.
(1) Given a geometric interpretation of T. In other words, express T in terms of reflections, projections, or rotations. (4 points)
(2) Is T an isomorphism? Why? (4 points)
(3) Is T an orthogonal transformation? Why? (4 points)

