Some questions form Chapters 1, 2 and 3

Richard Brown
Mathematics Department

October 9, 2013

More than one answer is possible here

A span is
(1) a basis for a vector space.
(2) a finite set of vectors.
(3) an infinite set of vectors.
(4) a linear subspace.
(6) a set of all linear combinations of a set of vectors.

More than one answer is possible here

For $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, T(\mathbf{x})=\mathbf{A x}$,
(1) $\operatorname{im}(T) \subset \mathbb{R}^{m}$.
(2) $\operatorname{im}(T) \subset \mathbb{R}^{n}$.
(3) $\operatorname{ker}(T) \subset \mathbb{R}^{m}$.
(9) $\operatorname{ker}(T) \subset \mathbb{R}^{n}$.

More than one answer is possible here

A basis of an n-dimensional vector space V is
(1) any finite set of vectors in V.
(2) an infinite set of vectors in V.
(3) The span of a set of vectors in V.
(9) any linearly independent set of vectors in V.
(3) any linearly independent set of vectors in V that span V.

More than one answer is possible here

For $T: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, T(\mathbf{x})=\mathbf{A x}, \operatorname{im}(A)=$
(1) all solutions to $\mathbf{A x}=\mathbf{b}, \forall \mathbf{b} \in \mathbb{R}^{n}$.
(2) all solutions to $\mathbf{A x}=\mathbf{0}$.
(0) all $\mathbf{b} \in \mathbb{R}^{n}$ where $\mathbf{A x}=\mathbf{b}$ is consistent.

- all points in \mathbb{R}^{m} mapped to a particular $\mathbf{b} \in \mathbb{R}^{n}$.

True or False

(1) The column vectors of any 5×4 matrix must be linearly dependent.
(2) If \mathbf{A} is an invertible $n \times n$ matrix, then the kernels of \mathbf{A} and \mathbf{A}^{-1} must be equal.
(3) If the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{n}$ span \mathbb{R}^{4}, then n must be equal to 4 .
(9) The image of a 3×4 matrix is a subspace of \mathbb{R}^{4}.
(5) If $\mathbf{A}^{2}=\mathbf{I}_{n}$, then \mathbf{A} must be invertible.
(0) The function $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x-y \\ y-x\end{array}\right]$ is a linear transformation.
(1) if $\mathbf{A B}=\mathbf{I}_{n}$ for two matrices \mathbf{A} and \mathbf{B}, the \mathbf{B} must be the inverse of \mathbf{A}.
(8) There exists a 3×4 matrix with rank 4 .
(9) A linear system with fewer unknowns than equations must have either an infinite number of solutions or no solutions.
(10) A matrix \mathbf{E} is in reduced-row echelon form. If we remove any single row, the resulting matrix will still be in reduced-row echelon form.

