Some questions form Chapters 1, 2 and 3

Richard Brown

Mathematics Department

October 9, 2013

A span is

- a basis for a vector space.
- 2 a finite set of vectors.
- an infinite set of vectors.
- a linear subspace.
- a set of all linear combinations of a set of vectors.

For
$$T: \mathbb{R}^m \to \mathbb{R}^n$$
, $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$,

- \bullet im $(T) \subset \mathbb{R}^m$.
- $\mathbf{2} \operatorname{im}(T) \subset \mathbb{R}^n$.
- **③** ker(T) ⊂ \mathbb{R}^m .
- $\ker(T) \subset \mathbb{R}^n$.

A basis of an n-dimensional vector space V is

- lacksquare any finite set of vectors in V.
- an infinite set of vectors in V.
- ullet The span of a set of vectors in V.
- ullet any linearly independent set of vectors in V.
- ullet any linearly independent set of vectors in V that span V.

For
$$T: \mathbb{R}^m \to \mathbb{R}^n$$
, $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$, $\operatorname{im}(A) =$

- **1** all solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$, $\forall \mathbf{b} \in \mathbb{R}^n$.
- 2 all solutions to Ax = 0.
- **3** all $\mathbf{b} \in \mathbb{R}^n$ where $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent.
- **4** all points in \mathbb{R}^m mapped to a particular $\mathbf{b} \in \mathbb{R}^n$.

True or False

- **①** The column vectors of any 5×4 matrix must be linearly dependent.
- ② If **A** is an invertible $n \times n$ matrix, then the kernels of **A** and **A**⁻¹ must be equal.
- **1** If the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n$ span \mathbb{R}^4 , then n must be equal to 4.
- The image of a 3×4 matrix is a subspace of \mathbb{R}^4 .
- **5** If $A^2 = I_n$, then **A** must be invertible.
- **1** The function $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x y \\ y x \end{bmatrix}$ is a linear transformation.
- $\mathbf{0}$ if $\mathbf{AB} = \mathbf{I}_n$ for two matrices \mathbf{A} and \mathbf{B} , the \mathbf{B} must be the inverse of \mathbf{A} .
- **1** There exists a 3×4 matrix with rank 4.
- A linear system with fewer unknowns than equations must have either an infinite number of solutions or no solutions.
- A matrix E is in reduced-row echelon form. If we remove any single row, the resulting matrix will still be in reduced-row echelon form.

6 / 6