CHALLENGE PROBLEM SET: CHAPTER 6, SECTIONS 1 AND 2, COURSE WEEK 11

110.201 LINEAR ALGEBRA
PROFESSOR RICHARD BROWN

Question 1. For what values of the constant k are the following matrices invertible:
(a) $\left[\begin{array}{lll}4 & 0 & 0 \\ 3 & k & 0 \\ 2 & 1 & 0\end{array}\right]$,
(b) $\left[\begin{array}{rrr}0 & 1 & k \\ 3 & 2 k & 5 \\ 9 & 7 & 5\end{array}\right]$,
(c) $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & k & k \\ k & k & k\end{array}\right]$.

Question 2. For the following matrices \mathbf{A}, use the determinant to determine for which values of the constant λ the matrix $\mathbf{A}-\lambda \mathbf{I}_{3}$ fails to be invertible:
(a) $\mathbf{A}=\left[\begin{array}{lll}2 & 0 & 0 \\ 5 & 3 & 0 \\ 7 & 6 & 4\end{array}\right]$,
(b) $\mathbf{A}=\left[\begin{array}{lll}3 & 5 & 6 \\ 0 & 4 & 2 \\ 0 & 2 & 7\end{array}\right]$.

Question 3. Calculate the determinants of the following 5×5 matrices:
(a) $\left[\begin{array}{lllll}5 & 4 & 0 & 0 & 0 \\ 6 & 7 & 0 & 0 & 0 \\ 3 & 4 & 5 & 6 & 7 \\ 2 & 1 & 0 & 1 & 2 \\ 2 & 1 & 0 & 0 & 1\end{array}\right]$,
(b) $\left[\begin{array}{lllll}0 & 0 & 1 & 0 & 2 \\ 5 & 4 & 3 & 2 & 1 \\ 1 & 3 & 5 & 0 & 7 \\ 2 & 0 & 4 & 0 & 6 \\ 0 & 0 & 3 & 0 & 4\end{array}\right]$,
(c) $\left[\begin{array}{lllll}0 & 0 & 2 & 3 & 1 \\ 0 & 0 & 0 & 2 & 2 \\ 0 & 9 & 7 & 9 & 3 \\ 0 & 0 & 0 & 0 & 5 \\ 3 & 4 & 5 & 8 & 5\end{array}\right]$.

Question 4. If \mathbf{A} is an $n \times n$ matrix, and k is an arbitrary constant, establish the relationship between $\operatorname{det}(\mathbf{A})$ and $\operatorname{det}(k \mathbf{A})$.

Question 5. Let \mathbf{M}_{n} be the $n \times n$ matrix with all ones along "the other diagonal", and zeros everywhere else. for example,

$$
\mathbf{M}_{4}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

(a) Find $\operatorname{det}\left(\mathbf{M}_{n}\right)$, for $n=2,3,4,5,6,7$.
(b) Find a formula for $\operatorname{det}\left(\mathbf{M}_{n}\right)$, in terms of n.

Question 6. Do the following:
(a) Find the determinant of the following via Gaussian elimination:

$$
\text { (i) }\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & 4 & 4 \\
1 & -1 & 2 & -2 \\
1 & -1 & 8 & -8
\end{array}\right], \quad \text { (ii) } \quad\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 & 2 \\
1 & 1 & 3 & 3 & 3 \\
1 & 1 & 1 & 4 & 4 \\
1 & 1 & 1 & 1 & 5
\end{array}\right] \text {. }
$$

(b) If a 4×4 matrix \mathbf{A} has columns $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, and \mathbf{v}_{4}, and $\operatorname{det}(\mathbf{A})=8$, then find the determinant of the following:
(i) $\operatorname{det}\left[\begin{array}{r}\mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \\ -9 \mathbf{v}_{4}\end{array}\right], \quad$ (ii) $\quad \operatorname{det}\left[\begin{array}{r}\mathbf{v}_{2} \\ \mathbf{v}_{3} \\ \mathbf{v}_{1} \\ \mathbf{v}_{4}\end{array}\right], \quad$ (iii) $\quad \operatorname{det}\left[\begin{array}{r}\mathbf{v}_{1} \\ \mathbf{v}_{2}+9 \mathbf{v}_{4} \\ \mathbf{v}_{4} \\ \mathbf{v}_{3}\end{array}\right], \quad$ (iv) $\operatorname{det}\left[\begin{array}{r}\mathbf{v}_{1} \\ \mathbf{v}_{1}+\mathbf{v}_{2} \\ \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3} \\ \mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3}+\mathbf{v}_{4}\end{array}\right]$.

Question 7. Find the determinants of the linear transformations:
(a) $T: P_{2} \rightarrow P_{2}, T(f(t))=f(-t)$.
(b) $T: P_{3} \rightarrow P_{3}, T(f(t))=f(-t)$.
(c) $T: \mathbb{C} \rightarrow \mathbb{C}, T(z)=(1+2 i) z$.
(d) $T: V \rightarrow V, T(\mathbf{M})=\left[\begin{array}{ll}2 & 3 \\ 0 & 4\end{array}\right] \mathbf{M}$, where V is the space of upper triangular 2×2 matrices.
(e) $T: W \rightarrow W, T(f)=3 f-2 f^{\prime}+f^{\prime \prime}$, where $V=\operatorname{span}\{\cos t, \sin t\}$.

Question 8. Consider the two distinct real numbers a and b. Do the following for the function

$$
f(t)=\operatorname{det}\left[\begin{array}{ccc}
1 & 1 & 1 \\
a & b & t \\
a^{2} & b^{2} & t^{2}
\end{array}\right]:
$$

(a) Show that $f(t)$ is a quadratic function. What is the coefficient of t^{2} ?
(b) Explain why $f(a)=f(b)=0$. Conclude that $f(t)=k(t-a)(t-b)$ for some constant k. Find k.
(c) For which values of t is the matrix invertible?

Question 9. Completely answer the following questions via explanation:
(a) Let $\mathbf{A}_{n \times n}$ be invertible such that both \mathbf{A} and \mathbf{A}^{-1} have integer entries. What are the possible values of $\operatorname{det}(\mathbf{A})$?
(b) For \mathbf{A} invertible, what are the possible values of $\operatorname{det}\left(\mathbf{A}^{T} \mathbf{A}\right)$?
(c) If \mathbf{A} is orthogonal, what are the possible values of $\operatorname{det}(\mathbf{A})$?
(d) Let \mathbf{A} be a skew-symmetric $n \times n$ matrix, where n is odd. Can \mathbf{A} possibly be invertible? Why or why not?

Question 10. Give an example of a 3×3 matrix \mathbf{A} with all nonzero entries where $\operatorname{det}(\mathbf{A})=13$.

