CHALLENGE PROBLEM SET: CHAPTER 6, SECTIONS 1 AND 2, COURSE WEEK 11

110.201 LINEAR ALGEBRA PROFESSOR RICHARD BROWN

Question 1. For what values of the constant k are the following matrices invertible:

	4	0	0]		0	1	k]		1	1	1]
(a)	3	k	0	,	(b)	3	2k	5	,	(c)	1	k	k	.
	2	1	0			9	7	5			k	k	k	

Question 2. For the following matrices \mathbf{A} , use the determinant to determine for which values of the constant λ the matrix $\mathbf{A} - \lambda \mathbf{I}_3$ fails to be invertible:

(a)	$\mathbf{A} =$	$\begin{bmatrix} 2\\ 5\\ 7 \end{bmatrix}$	$\begin{array}{c} 0 \\ 3 \\ 6 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ 4 \end{array}$,	(b)	$\mathbf{A} =$	$\begin{bmatrix} 3\\0\\0 \end{bmatrix}$	$5 \\ 4 \\ 2$	$\begin{array}{c} 6 \\ 2 \\ 7 \end{array}$].
		L'	0	4.	J			LU	4	' -	

Question 3. Calculate the determinants of the following 5×5 matrices:

	5	4	0	0	0			0	0	1	0	2			0	0	2	3	1	
	6	7	0	0	0			5	4	3	2	1			0	0	0	2	2	
(a)	3	4	5	6	7	,	(b)	1	3	5	0	$\overline{7}$,	(c)	0	9	7	9	3	.
	2	1	0	1	2			2	0	4	0	6			0	0	0	0	5	
	2	1	0	0	1			0	0	3	0	4			3	4	5	8	5	

- Question 4. If A is an $n \times n$ matrix, and k is an arbitrary constant, establish the relationship between $det(\mathbf{A})$ and $det(k\mathbf{A})$.
- Question 5. Let \mathbf{M}_n be the $n \times n$ matrix with all ones along "the other diagonal", and zeros everywhere else. for example,

$$\mathbf{M}_4 = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

- (a) Find det (\mathbf{M}_n) , for n = 2, 3, 4, 5, 6, 7.
- (b) Find a formula for $det(\mathbf{M}_n)$, in terms of n.

Question 6. Do the following:

(a) Find the determinant of the following via Gaussian elimination:

	Γ1	1	1	1 7		1	1	1	1	1	
(i)		1	1			1	2	2	2	2	
		1	4	4	(ii)	1	1	3	3	3	.
		-1	2	-2		1	1	1 1 4	4		
	$\lfloor 1$	-1	8	-8 J		1	1	1	1	$\overline{5}$	

(b) If a 4×4 matrix **A** has columns \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , and \mathbf{v}_4 , and det(**A**) = 8, then find the determinant of the following:

(i) det
$$\begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ -9\mathbf{v}_4 \end{bmatrix}$$
, (ii) det $\begin{bmatrix} \mathbf{v}_2 \\ \mathbf{v}_3 \\ \mathbf{v}_1 \\ \mathbf{v}_4 \end{bmatrix}$, (iii) det $\begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 + 9\mathbf{v}_4 \\ \mathbf{v}_4 \\ \mathbf{v}_3 \end{bmatrix}$, (iv) det $\begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_1 + \mathbf{v}_2 \\ \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 \\ \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4 \end{bmatrix}$.

Question 7. Find the determinants of the linear transformations:

- (a) $T: P_2 \to P_2, T(f(t)) = f(-t).$
- **(b)** $T: P_3 \to P_3, T(f(t)) = f(-t).$
- (c) $T: \mathbb{C} \to \mathbb{C}, T(z) = (1+2i)z.$
- (d) $T: V \to V, T(\mathbf{M}) = \begin{bmatrix} 2 & 3 \\ 0 & 4 \end{bmatrix} \mathbf{M}$, where V is the space of upper triangular 2×2 matrices. (e) $T: W \to W, T(f) = 3f - 2f' + f''$, where $V = \text{span} \{\cos t, \sin t\}$.

Question 8. Consider the two distinct real numbers a and b. Do the following for the function

$$f(t) = \det \begin{bmatrix} 1 & 1 & 1 \\ a & b & t \\ a^2 & b^2 & t^2 \end{bmatrix}:$$

- (a) Show that f(t) is a quadratic function. What is the coefficient of t^2 ?
- (b) Explain why f(a) = f(b) = 0. Conclude that f(t) = k(t-a)(t-b) for some constant k. Find k.
- (c) For which values of t is the matrix invertible?

Question 9. Completely answer the following questions via explanation:

- (a) Let $\mathbf{A}_{n \times n}$ be invertible such that both \mathbf{A} and \mathbf{A}^{-1} have integer entries. What are the possible values of det(\mathbf{A})?
- (b) For A invertible, what are the possible values of $det(\mathbf{A}^T \mathbf{A})$?
- (c) If \mathbf{A} is orthogonal, what are the possible values of det(\mathbf{A})?
- (d) Let A be a skew-symmetric $n \times n$ matrix, where n is odd. Can A possibly be invertible? Why or why not?

Question 10. Give an example of a 3×3 matrix **A** with all nonzero entries where det(**A**) = 13.