CHALLENGE PROBLEM SET: CHAPTER 5, SECTIONS 3 AND 5, COURSE WEEK 10

110.201 LINEAR ALGEBRA PROFESSOR RICHARD BROWN

Question 1. Find all orthogonal 2×2 matrices.

Question 2. Do the following:

- (a) Find an orthogonal transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ such that $T \begin{bmatrix} 2/3 \\ 2/3 \\ 1/3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.
- (b) Is there an orthogonal transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that

$$T\begin{bmatrix}2\\3\\0\end{bmatrix} = \begin{bmatrix}3\\0\\2\end{bmatrix} \text{ and } T\begin{bmatrix}-3\\2\\0\end{bmatrix} = \begin{bmatrix}2\\-3\\0\end{bmatrix}.$$

Question 3. Do the following:

(a) Consider the line $L \subset \mathbb{R}^n$ spanned by the vector $\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$. Consider the matrix \mathbf{A} of the

orthogonal projection onto L. Describe the ijth entry of A in terms of the components u_i of **u**.

(b) Find the matrix A of the orthogonal projection onto the line in \mathbb{R}^n spanned by the vector

$$\left[\begin{array}{c}1\\1\\\vdots\\1\end{array}\right]\right\} \quad \text{all } n \text{ components are } 1.$$

Question 4. Do the following:

- (a) Find a basis of the space of all symmetric 4×4 matrices, and determine the dimension of the space.
- (b) Find a basis of the space of all skew-symmetric 4×4 matrices, and determine the dimension of the space.
- (c) Find the image and kernel of the linear transformation $L(\mathbf{A}) = \frac{1}{2} (\mathbf{A} \mathbf{A}^T)$, from $\mathbb{R}^{4 \times 4}$ to $\mathbb{R}^{4\times 4}$. *Hint:* This is part (c) for a reason.

Question 5. In \mathbb{R}^4 , consider the subspace W spanned by the vectors $\begin{bmatrix} 1\\1\\-1\\0 \end{bmatrix}$ and $\begin{bmatrix} 0\\1\\1\\-1 \end{bmatrix}$. Find the matrix

 \mathbf{P}_W of the orthogonal projection onto W.

Question 6. Consider an $n \times m$ matrix **P** and an $m \times n$ matrix **Q**. Show that $\operatorname{trace}(\mathbf{PQ}) = \operatorname{trace}(\mathbf{QP})$.

Question 7. Do the following:

(a) Find an *orthonormal* basis of the space P_1 with inner product

$$\langle f,g\rangle = \int_0^1 f(t)g(t) dt$$

- (b) Show that $\langle f, g \rangle = \frac{1}{2} (f(0)g(0) + f(1)g(1))$ is an inner product on P_1 .
- (c) Find an *orthonormal* basis of the space P_1 with the inner product

$$\langle f,g \rangle = \frac{1}{2} \left(f(0)g(0) + f(1)g(1) \right).$$

Question 8. For which 2×2 matrices **A** is

$$\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v}^T \mathbf{A} \mathbf{w}$$

an inner product on \mathbb{R}^2 ? *Hint:* Be prepared to complete the square.

Question 9. Questions to argue over:

- (a) If T is a linear transformation from \mathbb{R}^n to \mathbb{R}^n such that $T(\mathbf{e}_1), \ldots, T(\mathbf{e}_n)$ are all unit vectors, then T must be an orthogonal transformation.
- (b) If **u** is a unit vector in \mathbb{R}^n , and $L = \operatorname{span}(\mathbf{U})$, then $\operatorname{proj}_L(\mathbf{x}) = (\mathbf{x} \cdot \mathbf{u})\mathbf{x}$ for all vectors $\mathbf{x} \in \mathbb{R}^n$.
- (c) If a matrix \mathbf{A} is orthogonal, then \mathbf{A}^T must be orthogonal as well.
- (d) Every invertible matrix **A** can be expressed as a product of an orthogonal matrix and an upper triangular one.
- (e) The entries of an orthogonal matrix are all less than or equal to 1.
- (f) If A is an invertible matrix such that $A^{-1} = A$, then A must be orthogonal.
- (g) Any square matrix can be written as the sum of a symmetric matrix and a skew-symmetric matrix.
- (h) There exists a basis of $\mathbb{R}^{2\times 2}$ that consists of orthogonal matrices.