CHALLENGE PROBLEM SET: CHAPTER 5, SECTIONS 3 AND 5, COURSE WEEK

 10110.201 LINEAR ALGEBRA
PROFESSOR RICHARD BROWN

Question 1. Find all orthogonal 2×2 matrices.

Question 2. Do the following:
(a) Find an orthogonal transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that $T\left[\begin{array}{l}2 / 3 \\ 2 / 3 \\ 1 / 3\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.
(b) Is there an orthogonal transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that

$$
T\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{l}
3 \\
0 \\
2
\end{array}\right] \quad \text { and } \quad T\left[\begin{array}{r}
-3 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{r}
2 \\
-3 \\
0
\end{array}\right]
$$

Question 3. Do the following:
(a) Consider the line $L \subset \mathbb{R}^{n}$ spanned by the vector $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$. Consider the matrix \mathbf{A} of the orthogonal projection onto L. Describe the $i j$ th entry of \mathbf{A} in terms of the components u_{i} of \mathbf{u}.
(b) Find the matrix \mathbf{A} of the orthogonal projection onto the line in \mathbb{R}^{n} spanned by the vector

$$
\left.\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]\right\} \text { all } n \text { components are } 1
$$

Question 4. Do the following:
(a) Find a basis of the space of all symmetric 4×4 matrices, and determine the dimension of the space.
(b) Find a basis of the space of all skew-symmetric 4×4 matrices, and determine the dimension of the space.
(c) Find the image and kernel of the linear transformation $L(\mathbf{A})=\frac{1}{2}\left(\mathbf{A}-\mathbf{A}^{T}\right)$, from $\mathbb{R}^{4 \times 4}$ to $\mathbb{R}^{4 \times 4}$. Hint: This is part (c) for a reason.

Question 5. In \mathbb{R}^{4}, consider the subspace W spanned by the vectors $\left[\begin{array}{r}1 \\ 1 \\ -1 \\ 0\end{array}\right]$ and $\left[\begin{array}{r}0 \\ 1 \\ 1 \\ -1\end{array}\right]$. Find the matrix \mathbf{P}_{W} of the orthogonal projection onto W.

Question 6. Consider an $n \times m$ matrix \mathbf{P} and an $m \times n$ matrix \mathbf{Q}. Show that

$$
\operatorname{trace}(\mathbf{P Q})=\operatorname{trace}(\mathbf{Q P})
$$

Question 7. Do the following:
(a) Find an orthonormal basis of the space P_{1} with inner product

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

(b) Show that $\langle f, g\rangle=\frac{1}{2}(f(0) g(0)+f(1) g(1))$ is an inner product on P_{1}.
(c) Find an orthonormal basis of the space P_{1} with the inner product

$$
\langle f, g\rangle=\frac{1}{2}(f(0) g(0)+f(1) g(1))
$$

Question 8. For which 2×2 matrices \mathbf{A} is

$$
\langle\mathbf{v}, \mathbf{w}\rangle=\mathbf{v}^{T} \mathbf{A} \mathbf{w}
$$

an inner product on \mathbb{R}^{2} ? Hint: Be prepared to complete the square.

Question 9. Questions to argue over:
(a) If T is a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{n} such that $T\left(\mathbf{e}_{1}\right), \ldots, T\left(\mathbf{e}_{n}\right)$ are all unit vectors, then T must be an orthogonal transformation.
(b) If \mathbf{u} is a unit vector in \mathbb{R}^{n}, and $L=\operatorname{span}(\mathbf{U})$, then $\operatorname{proj}_{L}(\mathbf{x})=(\mathbf{x} \cdot \mathbf{u}) \mathbf{x}$ for all vectors $\mathbf{x} \in \mathbb{R}^{n}$.
(c) If a matrix \mathbf{A} is orthogonal, then \mathbf{A}^{T} must be orthogonal as well.
(d) Every invertible matrix \mathbf{A} can be expressed as a product of an orthogonal matrix and an upper triangular one.
(e) The entries of an orthogonal matrix are all less than or equal to 1.
(f) If \mathbf{A} is an invertible matrix such that $\mathbf{A}^{-1}=\mathbf{A}$, then \mathbf{A} must be orthogonal.
(g) Any square matrix can be written as the sum of a symmetric matrix and a skew-symmetric matrix.
(h) There exists a basis of $\mathbb{R}^{2 \times 2}$ that consists of orthogonal matrices.

