CHALLENGE PROBLEM SET: CHAPTER 5, SECTIONS 1 AND 2, COURSE WEEK 9

110.201 LINEAR ALGEBRA PROFESSOR RICHARD BROWN

Question 1. Do the following three problems:

- (a) Find the angle between the vectors $\mathbf{u} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 2\\ 3\\ 4 \end{bmatrix}$. (b) Determine whether the angle between $\mathbf{u} = \begin{bmatrix} 1\\ -1\\ 2\\ -2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 3\\ 4\\ 5\\ 3 \end{bmatrix}$ is acute, right, or obtuse.
- (c) Consider the vectors

$$\mathbf{u} = \begin{bmatrix} 1\\1\\\vdots\\1 \end{bmatrix}, \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} 1\\0\\\vdots\\0 \end{bmatrix} \quad \text{in } \mathbb{R}^n.$$

For n = 2, 3, 4, find the angle θ between **u** and **v**. For n = 2, 3, represent the vectors graphically. Then find the limit of θ as n approaches infinity.

Question 2. For the following situations, find a basis for the subspace $W^{\perp} \in \mathbb{R}^4$, where

(a)
$$W = \operatorname{span}\left(\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}\right)$$
, (b) $W = \operatorname{span}\left(\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 5\\6\\7\\8 \end{bmatrix}\right)$,
(c) $W = \operatorname{span}\left(\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 5\\6\\7\\8 \end{bmatrix}, \begin{bmatrix} 2\\-1\\0\\1 \end{bmatrix}\right)$.

Question 3. For a line L in \mathbb{R}^2 passing through the origin, draw a sketch to interpret the following transformations graphically:

- (a) $T(\mathbf{x}) = \mathbf{x} \operatorname{proj}_L \mathbf{x}$.
- (b) $T(\mathbf{x}) = \mathbf{x} 2 \operatorname{proj}_L \mathbf{x}$.
- (c) $T(\mathbf{x}) = 2 \operatorname{proj}_L \mathbf{x} \mathbf{x}$.

Question 4. Find scalars a, b, c, d, e, f, g so that the three vectors here are orthonormal:

$$\left[\begin{array}{c}a\\d\\f\end{array}\right], \quad \left[\begin{array}{c}b\\1\\g\end{array}\right], \quad \left[\begin{array}{c}c\\e\\\frac{1}{2}\end{array}\right].$$

Question 5. Find the orthogonal projection of $\begin{bmatrix} 49\\ 49\\ 49 \end{bmatrix}$ onto the subspace of \mathbb{R}^3 spanned by $\begin{bmatrix} 2\\ 3\\ 6 \end{bmatrix}$ and $\begin{bmatrix} 3\\ -6\\ 2 \end{bmatrix}$.

Question 6. Find the orthogonal projection of $\mathbf{e}_1 \in \mathbb{R}^4$ onto the subspace spanned by

[1]		[1]		[1]	
1		1		-1	
1	,	-1	,	-1	•
1		-1		1	

Question 7. Consider the vectors \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 in \mathbb{R}^4 ; We are told that $\mathbf{v}_i \cdot \mathbf{v}_j$ is the entry a_{ij} entry of

$$\mathbf{A} = \begin{bmatrix} 3 & 5 & 11 \\ 5 & 9 & 20 \\ 11 & 20 & 49 \end{bmatrix}.$$

Do the following:

- (a) Find $||v_2||$.
- (b) Find the angle enclosed by vectors \mathbf{v}_2 and \mathbf{v}_3 .
- (c) Find $||v_1 + v_2||$.
- (d) Find $\operatorname{proj}_{\mathbf{v}_2}(\mathbf{v}_1)$ expressed as a scalar multiple of \mathbf{v}_2 .
- (e) Find a non-zero vector \mathbf{v} in span $(\mathbf{v}_2, \mathbf{v}_3)$ such that \mathbf{v} is orthogonal to \mathbf{v}_3 . Express \mathbf{v} as a linear combination of \mathbf{v}_2 and \mathbf{v}_3 .
- (f) Find $\operatorname{proj}_{V}(\mathbf{v}_{3})$, where $V = \operatorname{span}(\mathbf{v}_{1}, \mathbf{v}_{2})$. Express your answer as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2} .

Question 8. Perform a Gram-Schmidt process on the sequences of vectors given:

(a)
$$\begin{bmatrix} 2\\2\\1 \end{bmatrix}, \begin{bmatrix} -2\\1\\2 \end{bmatrix}, \begin{bmatrix} 18\\0\\0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1\\7\\1\\7 \end{bmatrix}, \begin{bmatrix} 0\\7\\2\\7 \end{bmatrix}, \begin{bmatrix} 1\\8\\1\\6 \end{bmatrix}$.

Question 9. Perform a QR factorization on the matrices given:

(a)
$$\begin{bmatrix} 2 & 3 & 5 \\ 0 & 4 & 6 \\ 0 & 0 & 7 \end{bmatrix}$$
, (b) $\begin{bmatrix} 5 & 3 \\ 4 & 6 \\ 2 & 7 \\ 2 & -2 \end{bmatrix}$.

Question 10. Find an orthonormal basis of:

(a) The kernel of
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & -1 & 1 \end{bmatrix}$$
, (b) The image of $\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 2 & -2 & 0 \end{bmatrix}$.