CHALLENGE PROBLEM SET: CHAPTER 3, SECTION 4, COURSE WEEK 6

110.201 LINEAR ALGEBRA
PROFESSOR RICHARD BROWN

Question 1. For the following sets of vectors, verify that \mathbf{x} is in the span of \mathbf{v}_{1} and \mathbf{v}_{2}. Then find the coordinates of \mathbf{x} with respect to the basis $\mathcal{B}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)$. Write the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$.
(a) $\mathbf{x}=\left[\begin{array}{r}3 \\ 1 \\ -4\end{array}\right] ; \mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}0 \\ 1 \\ -1\end{array}\right]$,
(b) $\mathbf{x}=\left[\begin{array}{r}-1 \\ 2 \\ 2\end{array}\right] ; \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-3 \\ 2 \\ 3\end{array}\right]$,
(c) $\mathbf{x}=\left[\begin{array}{r}-5 \\ 1 \\ 3\end{array}\right] ; \mathbf{v}_{1}=\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}-2 \\ 1 \\ 0\end{array}\right]$.

Question 2. In each instance (or working in three subgroups), the matrix \mathbf{A} below is with respect to the standard basis. Find the matrix \mathbf{B} of the linear transformation $T(\mathbf{x})=\mathbf{A} \mathbf{x}$ with respect to the given basis $\mathcal{B}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right)$:
(a) $\mathbf{A}=\left[\begin{array}{rrr}4 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 4\end{array}\right] ; \mathbf{v}_{1}=\left[\begin{array}{r}2 \\ 1 \\ -2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 2 \\ 1\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$,
(b) $\mathbf{A}=\left[\begin{array}{rrr}5 & -4 & -2 \\ -4 & 5 & -2 \\ -2 & -2 & 8\end{array}\right] ; \mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{r}0 \\ 1 \\ -2\end{array}\right]$,
(c) $\mathbf{A}=\left[\begin{array}{rrr}-1 & 1 & 0 \\ 0 & -2 & 2 \\ 3 & -9 & 6\end{array}\right] ; \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 3 \\ 6\end{array}\right]$.

Question 3. Consider the plane $2 x_{1}-3 x_{2}+4 x_{3}=0$. Find a basis of this plane \mathcal{B} so that $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ for $\mathbf{x}=\left[\begin{array}{r}2 \\ 0 \\ -1\end{array}\right]$

Question 4. Find a basis \mathcal{B} of \mathbb{R}^{2} such that the \mathcal{B}-matrix of the linear transformation

$$
T(\mathbf{x})=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \mathbf{x} \quad \text { is } \quad B=\left[\begin{array}{rr}
5 & 0 \\
0 & -1
\end{array}\right]
$$

Question 5. Consider a basis \mathcal{B} of \mathbb{R}^{2} consisting of the vectors $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$, and let \mathcal{R} be the basis consisting of the vectors $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}3 \\ 4\end{array}\right]$. Find a matrix \mathbf{P} such that

$$
[\mathbf{x}]_{\mathcal{R}}=\mathbf{P}[\mathbf{x}]_{\mathcal{B}} .
$$

Question 6. Do the following:
(a) If $c \neq 0$, find the matrix of the linear transformation $T(\mathbf{x})=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \mathbf{x}$ of \mathbb{R}^{2} with respect to the basis $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}a \\ c\end{array}\right]$.
(b) Find an invertible 2×2 matrix \mathbf{S} such that

$$
\mathbf{S}^{-1}\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \mathbf{S}
$$

is of the form $\left[\begin{array}{ll}0 & b \\ 1 & d\end{array}\right]$.
Question 7. For the matrix $\mathbf{A}=\left[\begin{array}{ll}-2 & 9 \\ -1 & 4\end{array}\right]$, find a basis \mathcal{B} of \mathbb{R}^{2} such that the \mathcal{B}-matrix \mathbf{B} of $T(\mathbf{x})=\mathbf{A x}$ is $\mathbf{B}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.

Question 8. Questions to argue over:
(a) If \mathbf{A} is a 5×6 matrix of rank 4 , then the nullity of \mathbf{A} is 1 .
(b) The identity matrix is similar to ALL $n \times n$ invertible matrices.
(c) The vectors of the form $\left[\begin{array}{l}a \\ b \\ 0 \\ a\end{array}\right]$, where a and b are arbitrary real numbers, form a subspace of \mathbb{R}^{4}.
(d) If \mathbf{A} is an invertible matrix, then the kernels of \mathbf{A} and \mathbf{A}^{-1} must be equal.
(e) There exists a 2×2 matrix \mathbf{A} where $\operatorname{im}(\mathbf{A})=\operatorname{ker}(\mathbf{A})$.
(f) If \mathbf{A} is similar to \mathbf{B}, then there exists one and only one invertible matrix \mathbf{S}, such that $\mathbf{S}^{-1} \mathbf{A} \mathbf{S}=$ B.
(g) If the image of an $n \times n$ matrix \mathbf{A} is all of \mathbb{R}^{n}, then \mathbf{A} must be invertible.

