CHALLENGE PROBLEM SET: CHAPTER 3, SECTION 4, COURSE WEEK 6

110.201 LINEAR ALGEBRA PROFESSOR RICHARD BROWN

Question 1. For the following sets of vectors, verify that \mathbf{x} is in the span of \mathbf{v}_1 and \mathbf{v}_2 . Then find the coordinates of \mathbf{x} with respect to the basis $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2)$. Write the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$.

(a)
$$\mathbf{x} = \begin{bmatrix} 3\\1\\-4 \end{bmatrix}$$
; $\mathbf{v}_1 = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$,
(b) $\mathbf{x} = \begin{bmatrix} -1\\2\\2 \end{bmatrix}$; $\mathbf{v}_1 = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -3\\2\\3 \end{bmatrix}$,
(c) $\mathbf{x} = \begin{bmatrix} -5\\1\\3 \end{bmatrix}$; $\mathbf{v}_1 = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -2\\1\\0 \end{bmatrix}$.

Question 2. In each instance (or working in three subgroups), the matrix **A** below is with respect to the standard basis. Find the matrix **B** of the linear transformation $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ with respect to the given basis $\mathcal{B} = (\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$:

(a)
$$\mathbf{A} = \begin{bmatrix} 4 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 4 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix},$$

(b) $\mathbf{A} = \begin{bmatrix} 5 & -4 & -2 \\ -4 & 5 & -2 \\ -2 & -2 & 8 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix},$
(c) $\mathbf{A} = \begin{bmatrix} -1 & 1 & 0 \\ 0 & -2 & 2 \\ 3 & -9 & 6 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ 3 \\ 6 \end{bmatrix}.$

Question 3. Consider the plane $2x_1 - 3x_2 + 4x_3 = 0$. Find a basis of this plane \mathcal{B} so that $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 2\\ 3 \end{bmatrix}$ for

$$\mathbf{x} = \begin{bmatrix} 2\\0\\-1 \end{bmatrix}.$$

Question 4. Find a basis \mathcal{B} of \mathbb{R}^2 such that the \mathcal{B} -matrix of the linear transformation

$$T(\mathbf{x}) = \begin{bmatrix} 1 & 2\\ 3 & 4 \end{bmatrix} \mathbf{x} \text{ is } B = \begin{bmatrix} 5 & 0\\ 0 & -1 \end{bmatrix}.$$

Question 5. Consider a basis \mathcal{B} of \mathbb{R}^2 consisting of the vectors $\begin{bmatrix} 1\\1 \end{bmatrix}$ and $\begin{bmatrix} 1\\2 \end{bmatrix}$, and let \mathcal{R} be the basis consisting of the vectors $\begin{bmatrix} 1\\2 \end{bmatrix}$ and $\begin{bmatrix} 3\\4 \end{bmatrix}$. Find a matrix \mathbf{P} such that $[\mathbf{x}]_{\mathcal{B}} = \mathbf{P}[\mathbf{x}]_{\mathcal{B}}$.

Question 6. Do the following:

(a) If c ≠ 0, find the matrix of the linear transformation T(x) = a b c d x of R² with respect to the basis 1 0 and a c.
(b) Find an invertible 2 × 2 matrix S such that

 $\begin{bmatrix} 2\\4 \end{bmatrix} \mathbf{S}$

$$\mathbf{S}^{-1} \begin{bmatrix} 1\\ 3 \end{bmatrix}$$

is of the form
$$\begin{bmatrix} 0 & b \\ 1 & d \end{bmatrix}$$
.

Question 7. For the matrix $\mathbf{A} = \begin{bmatrix} -2 & 9 \\ -1 & 4 \end{bmatrix}$, find a basis \mathcal{B} of \mathbb{R}^2 such that the \mathcal{B} -matrix \mathbf{B} of $T(\mathbf{x}) = \mathbf{A}\mathbf{x}$ is $\mathbf{B} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

Question 8. Questions to argue over:

- (a) If A is a 5×6 matrix of rank 4, then the nullity of A is 1.
- (b) The identity matrix is similar to ALL $n \times n$ invertible matrices.

(c) The vectors of the form $\begin{bmatrix} a \\ b \\ 0 \\ a \end{bmatrix}$, where *a* and *b* are arbitrary real numbers, form a subspace of \mathbb{R}^4 .

- (d) If A is an invertible matrix, then the kernels of A and A^{-1} must be equal.
- (e) There exists a 2×2 matrix **A** where $im(\mathbf{A}) = ker(\mathbf{A})$.
- (f) If A is similar to B, then there exists one and only one invertible matrix S, such that $S^{-1}AS = B$.
- (g) If the image of an $n \times n$ matrix **A** is all of \mathbb{R}^n , then **A** must be invertible.