CHALLENGE PROBLEM SET: CHAPTER 2, COURSE WEEK 4

110.201 LINEAR ALGEBRA PROFESSOR RICHARD BROWN

Question 1. Let $\mathbf{A} = \begin{bmatrix} 2 & 3 \\ 5 & k \end{bmatrix}$. Do the following:

- (a) Find all values of \bar{k} so that A is invertible.
- (b) Find all values of k so that all of the entries of \mathbf{A}^{-1} are integers.

Question 2. Do the following:

(a) For $\mathbf{v} = \begin{bmatrix} 2\\ 3\\ 4 \end{bmatrix}$, determine if the transformation $T(\mathbf{x}) = \mathbf{v} \cdot \mathbf{x}$ from \mathbb{R}^3 to \mathbb{R} is linear. If it is, then find the matrix for T.

(b) Do the same for the arbitrary vector
$$\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$
.

(c) Conversely, consider an arbitrary linear transformation $T : \mathbb{R}^3 \to \mathbb{R}$. Show that it can always be written as $T(\mathbf{x}) = \mathbf{v} \cdot \mathbf{x}$ for some choice of vector $\mathbf{v} \in \mathbb{R}^3$.

Question 3. Let L be a line in \mathbb{R}^3 that consists of all scalar multiples of the vector $\begin{bmatrix} 2\\1\\2 \end{bmatrix}$. Find the orthogonal projection of the vector $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ onto L.

- Question 4. Given a reflection matrix A and a vector x ∈ R², define v = x + Ax and w = x Ax.
 (a) Using the definition of a reflection, find A (Ax) in terms of x.
 - (b) Express Av in terms of v.
 - (c) Express Aw in terms of w.
 - (d) If the vectors \mathbf{v} and \mathbf{w} are both non-zero, then what is the angle between \mathbf{v} and \mathbf{w} ?
 - (e) If v is non-zero, then what is the relationship between v and the line of reflection L?

Question 5. Find all matrices that commute with the matrix $\mathbf{A} = \begin{bmatrix} 2 & 3 \\ -3 & 2 \end{bmatrix}$.

Question 6. Divide your group into three groups and work the following problem, each with one different matrix **A** below, and parallel on a board. Present your solutions in turn and contrast your solution with the others in this group. Discuss. For each matrix **A** given, calculate the first few "powers" of **A**. This means $\mathbf{A}^2 = \mathbf{A}\mathbf{A}$, $\mathbf{A}^3 = \mathbf{A}\mathbf{A}\mathbf{A}$, and so on. Then use the pattern given to find \mathbf{A}^{1001} . Interpret your answers geometrically, in terms of compositions of reflections, rotations, scalings, orthogonal projections and shears.

(a)
$$\mathbf{A} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
, (b) $\mathbf{A} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, (c) $\mathbf{A} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$.

Question 7. Now divide your group into two groups and work the following problem, each with one different matrix from (a) and (b). Find ALL matrices **A** that satisfy the given matrix equation:

(a)
$$\begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix}$$
 $\mathbf{A} = \mathbf{I}_3$, (b) $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ $\mathbf{A} = \mathbf{I}_2$.

- Question 8. Which of the following linear transformations $T : \mathbb{R}^3 \to \mathbb{R}^3$ are invertible. For those that are, describe in detail the inverse transformation.
 - (a) Reflection about a plane.
 - (b) orthogonal projection onto a plane.
 - (c) Scaling by a factor of 5 (That is, $T(\mathbf{x}) = 5\mathbf{x}$ for all vectors $\mathbf{x} \in \mathbb{R}^3$.)
 - (d) Rotation about an axis.
- **Question 9.** Consider a linear system of four equations with three unknowns. We are told that the system has a unique solution. What does the reduced row-echelon form of the coefficient matrix of this system look like? Fully explain your answer.
- Question 10. Consider an invertible linear transformation $T : \mathbb{R}^m \to \mathbb{R}^n$, $T(\mathbf{x}) = \mathbf{A}\mathbf{x} = \mathbf{y}$ with inverse linear transformation $L = T^{-1}$, from \mathbb{R}^n to \mathbb{R}^m . Since L is also linear, we know there is a $m \times n$ matrix \mathbf{B} , where $L(\mathbf{y}) = \mathbf{B}\mathbf{y} = \mathbf{x}$. Use the equations $\mathbf{B}\mathbf{A} = \mathbf{I}_m$ and $\mathbf{A}\mathbf{B} = \mathbf{I}_n$ to show that m must equal n. (As a hint, think about the number of solutions to the linear systems $\mathbf{A}\mathbf{x} = \mathbf{0}$, and $\mathbf{B}\mathbf{x} = \mathbf{0}$.)

Question 11. Do the following:

- (a) Consider an $n \times m$ matrix **A** with rank(**A**)< n. Show that there exists a vector $\mathbf{b} \in \mathbb{R}^n$ such that the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is inconsistent. Hint: For $\mathbf{E} = \operatorname{rref}(\mathbf{A})$, show that there exists a vector $\mathbf{c} \in \mathbb{R}^n$ such that the system $\mathbf{E}\mathbf{x} = \mathbf{c}$ is inconsistent. Than "work backward".
- (b) Let A be $n \times m$, with n > m. Show that there exists a vector $\mathbf{b} \in \mathbb{R}^n$ such that the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is inconsistent.