CHALLENGE PROBLEM SET: COURSE WEEK 3

110.201 LINEAR ALGEBRA PROFESSOR RICHARD BROWN

Question 1. For the following system

 $\begin{aligned} x+2y+3z &= 1\\ 4x+5y+6z &= 4\\ 7x+8y+9z &= k, \end{aligned}$

where $k \in \mathbb{R}$, do the following:

- (a) Write this system as a single matrix equation.
- (b) Write this system an as augmented matrix. In this case, put the augmented matrix in reduced-row echelon form. Determine for every value of k the number of solutions of the system.
- **Question 2.** Divide your group into three groups and work the three following problems in parallel on a board. Present your solutions in turn and contrast your solution with the others in this group. Discuss.
 - (a) Find a polynomial f(t) of degree ≤ 2 of the form $f(t) = a + bt + ct^2$ whose graph goes through the points (1, p), (2, q) and (3, r), where p, q, r are arbitrary constants. Does such a polynomial exist for all values of p, q, r?
 - (b) Find a polynomial f(t) of degree ≤ 2 of the form $f(t) = a + bt + ct^2$ whose graph goes through the points (1,1) and (2,0) such that $\int_{1}^{2} f(t) dt = -1$. Will this polynomial still exist if we change the integral value to any other value besides -1?
 - (c) Find a polynomial f(t) of degree ≤ 2 of the form $f(t) = a + bt + ct^2$ whose graph goes through the points (1, 1) and (3, 3) such that f'(2) = 3. Will this polynomial still exist if we change the derivative value to any other value besides 3?

Question 3. Find all vectors in \mathbb{R}^4 that are perpendicular to the three vectors

1		[1]			[1]	
1	,	2	,	and	9	
1		3			9	·
1		4			[7]	

Question 4. Consider a linear system of four equations with three unknowns. We are told that the system has a unique solution. What does the reduced row-echelon form of the coefficient matrix of this system look like? Fully explain your answer.

- Question 5. In each case, the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4 \in \mathbb{R}^2$ are shown in the sketch. Arguing geometrically, answer the following: determine how many solutions there are (values for x and y in the first two and x, y and z in the last) for each system given:
 - (a) How many solutions x and y does the system $x\mathbf{v}_1 + y\mathbf{v}_2 = \mathbf{v}_3$ have?
 - (b) How many solutions x and y does the system $x\mathbf{v}_1 + y\mathbf{v}_2 = \mathbf{v}_3$ have?
 - (c) How many solutions x, y and z does the system $x\mathbf{v}_1 + y\mathbf{v}_2 + z\mathbf{v}_3 = \mathbf{v}_4$ have?

- **Question 6.** Again divide into the three groups and again work the three following problems in parallel on a board. Present your solutions in turn and contrast your solution with the others in this group. Discuss.
 - (a) Let A be a 4×4 matrix, and let $\mathbf{b}, \mathbf{c} \in \mathbb{R}^4$ be two vectors. We are told that the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution. What can you say about the number of solutions of the system $\mathbf{A}\mathbf{x} = \mathbf{c}$?
 - (b) Let A be a 4×4 matrix, and let $\mathbf{b}, \mathbf{c} \in \mathbb{R}^4$ be two vectors. We are told that the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is inconsistent. What can you say about the number of solutions of the system $\mathbf{A}\mathbf{x} = \mathbf{c}$?
 - (c) Let A be a 4×3 matrix, and let $\mathbf{b}, \mathbf{c} \in \mathbb{R}^4$ be two vectors. We are told that the system $\mathbf{A}\mathbf{x} = \mathbf{b}$ has a unique solution. What can you say about the number of solutions of the system $\mathbf{A}\mathbf{x} = \mathbf{c}$?
- Question 7. Following Homework Exercise 1.3.49, for an arbitrary positive integer $n \ge 3$, find all solutions x_1, x_2, \ldots, x_n of the simultaneous equations $x_2 = \frac{1}{2}(x_1 + x_3), x_3 = \frac{1}{2}(x_2 + x_4), \ldots, x_{n-1} = \frac{1}{2}(x_{n-2} + x_n)$. That is, you are asked to solve the system of equations given by

$$x_k = \frac{1}{2} (x_{k-1} + x_{k+1}), \text{ for } k = 2, 3, \dots, n-1.$$