CHALLENGE PROBLEM SET: COURSE WEEK 3

110.201 LINEAR ALGEBRA
PROFESSOR RICHARD BROWN

Question 1. For the following system

$$
\begin{array}{r}
x+2 y+3 z=1 \\
4 x+5 y+6 z=4 \\
7 x+8 y+9 z=k,
\end{array}
$$

where $k \in \mathbb{R}$, do the following:
(a) Write this system as a single matrix equation.
(b) Write this system an as augmented matrix. In this case, put the augmented matrix in reducedrow echelon form. Determine for every value of k the number of solutions of the system.

Question 2. Divide your group into three groups and work the three following problems in parallel on a board. Present your solutions in turn and contrast your solution with the others in this group. Discuss.
(a) Find a polynomial $f(t)$ of degree ≤ 2 of the form $f(t)=a+b t+c t^{2}$ whose graph goes through the points $(1, p),(2, q)$ and $(3, r)$, where p, q, r are arbitrary constants. Does such a polynomial exist for all values of p, q, r ?
(b) Find a polynomial $f(t)$ of degree ≤ 2 of the form $f(t)=a+b t+c t^{2}$ whose graph goes through the points $(1,1)$ and $(2,0)$ such that $\int_{1}^{2} f(t) d t=-1$. Will this polynomial still exist if we change the integral value to any other value besides -1 ?
(c) Find a polynomial $f(t)$ of degree ≤ 2 of the form $f(t)=a+b t+c t^{2}$ whose graph goes through the points $(1,1)$ and $(3,3)$ such that $f^{\prime}(2)=3$. Will this polynomial still exist if we change the derivative value to any other value besides 3 ?

Question 3. Find all vectors in \mathbb{R}^{4} that are perpendicular to the three vectors

$$
\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], \quad \text { and } \quad\left[\begin{array}{c}
1 \\
9 \\
9 \\
7
\end{array}\right] .
$$

Question 4. Consider a linear system of four equations with three unknowns. We are told that the system has a unique solution. What does the reduced row-echelon form of the coefficient matrix of this system look like? Fully explain your answer.

Question 5. In each case, the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{4} \in \mathbb{R}^{2}$ are shown in the sketch. Arguing geometrically, answer the following: determine how many solutions there are (values for x and y in the first two and x, y and z in the last) for each system given:
(a) How many solutions x and y does the system $x \mathbf{v}_{1}+y \mathbf{v}_{2}=\mathbf{v}_{3}$ have?
(b) How many solutions x and y does the system $x \mathbf{v}_{1}+y \mathbf{v}_{2}=\mathbf{v}_{3}$ have?
(c) How many solutions x, y and z does the system $x \mathbf{v}_{1}+y \mathbf{v}_{2}+z \mathbf{v}_{3}=\mathbf{v}_{4}$ have?

Question 6. Again divide into the three groups and again work the three following problems in parallel on a board. Present your solutions in turn and contrast your solution with the others in this group. Discuss.
(a) Let \mathbf{A} be a 4×4 matrix, and let $\mathbf{b}, \mathbf{c} \in \mathbb{R}^{4}$ be two vectors. We are told that the system $\mathbf{A x}=\mathbf{b}$ has a unique solution. What can you say about the number of solutions of the system $\mathbf{A x}=\mathbf{c}$?
(b) Let \mathbf{A} be a 4×4 matrix, and let $\mathbf{b}, \mathbf{c} \in \mathbb{R}^{4}$ be two vectors. We are told that the system $\mathbf{A x}=\mathbf{b}$ is inconsistent. What can you say about the number of solutions of the system $\mathbf{A x}=\mathbf{c}$?
(c) Let \mathbf{A} be a 4×3 matrix, and let $\mathbf{b}, \mathbf{c} \in \mathbb{R}^{4}$ be two vectors. We are told that the system $\mathbf{A x}=\mathbf{b}$ has a unique solution. What can you say about the number of solutions of the system $\mathbf{A x}=\mathbf{c}$?

Question 7. Following Homework Exercise 1.3.49, for an arbitrary positive integer $n \geq 3$, find all solutions $x_{1}, x_{2}, \ldots, x_{n}$ of the simultaneous equations $x_{2}=\frac{1}{2}\left(x_{1}+x_{3}\right), x_{3}=\frac{1}{2}\left(x_{2}+x_{4}\right), \ldots, x_{n-1}=\frac{1}{2}\left(x_{n-2}+\right.$ $\left.x_{n}\right)$. That is, you are asked to solve the system of equations given by

$$
x_{k}=\frac{1}{2}\left(x_{k-1}+x_{k+1}\right), \quad \text { for } \quad k=2,3, \ldots, n-1
$$

