CHALLENGE PROBLEM SET: CHAPTER 6, SECTION 3, CHAPTER 7, SECTIONS 1 AND 2, COURSE WEEK 12

110.201 LINEAR ALGEBRA
PROFESSOR RICHARD BROWN

Question 1. Use the geometric interpretation of the determinant of a 2×2 matrix (from Section 6.3) to find the areas of the following regions:
(a) The parallelogram defined by $\left[\begin{array}{l}3 \\ 7\end{array}\right]$ and $\left[\begin{array}{l}8 \\ 2\end{array}\right]$.
(b) The triangle in the figure at left below.
(c) The region in the figure at right below.

Question 2. For \mathbf{v} an eigenvector of both $\mathbf{A}_{n \times n}$ and $\mathbf{B}_{n \times n}$, determine the following:
(a) Is \mathbf{v} necessarily an eigenvector of $\mathbf{A}+\mathbf{B}$?
(b) Is \mathbf{v} necessarily an eigenvector of $\mathbf{A B}$?

In each case, if so, then determine the corresponding eigenvalue for \mathbf{v}.

Question 3. Do the following:
(a) Show that 4 is an eigenvalue of $\mathbf{A}=\left[\begin{array}{rr}-6 & 6 \\ -15 & 13\end{array}\right]$ and find all eigenvectors.
(b) Find all 2×2 matrices that have $\left[\begin{array}{l}2 \\ 3\end{array}\right]$ as an eigenvector with eigenvalue -1 .
(c) Find all 2×2 matrices that have \mathbf{e}_{1} as an eigenvector.

Question 4. Show that similar matrices have the same eigenvalues. Hint: If \mathbf{v} is an eigenvalue of $\mathbf{S}^{-1} \mathbf{A S}$, then $\mathbf{S v}$ is an eigenvector of \mathbf{A}.

Question 5. Find a 2×2 matrix where $\left[\begin{array}{l}3 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ are eigenvectors with respective eigenvalues 5 and 10.

Question 6. For the matrix $\mathbf{A}=\left[\begin{array}{rr}3 & 4 \\ 4 & -3\end{array}\right]$, do the following:
(a) Use the geometric interpretation of \mathbf{A} as a reflection combined with a scaling to find the eigenvalues of \mathbf{A}.
(b) Find an eigenbasis of \mathbf{A}.
(c) Diagonalize \mathbf{A}.

Question 7. Let V be the linear space of all 2×2 matrices for which $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector.
(a) Find a basis for V and determine its dimension.
(b) Consider the linear transformation $T: V \rightarrow \mathbb{R}, T(\mathbf{A})=\mathbf{A}\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Find image (T) and $\operatorname{ker}(T)$. What is the rank of T ?
(c) Consider the linear transformation $T: V \rightarrow \mathbb{R}, T(\mathbf{A})=\mathbf{A}\left[\begin{array}{l}1 \\ 3\end{array}\right]$. Find image (T) and $\operatorname{ker}(T)$. What is the rank of T ?

Question 8. For the following matrices, find all eigenvalues and determine their algebraic multiplicities:
(a) $\left[\begin{array}{rrr}3 & -2 & 5 \\ 1 & 0 & 7 \\ 0 & 0 & 2\end{array}\right]$,
(b) $\left[\begin{array}{rrr}5 & 1 & -5 \\ 2 & 1 & 0 \\ 8 & 2 & -7\end{array}\right]$,
(c) $\left[\begin{array}{rrrr}2 & -2 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 3 & -4 \\ 0 & 0 & 2 & -3\end{array}\right]$.

Question 9. Consider the matrix $\mathbf{A}=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$, where a, b and c are non-zero constants. For which values of a, b, and c does \mathbf{A} have two distinct eigenvalues?

Question 10. Consider the matrix $\mathbf{A}=\left[\begin{array}{rr}a & b \\ b & -a\end{array}\right]$, where a, and b are arbitrary constants. Find all eigenvectors of \mathbf{A}.

