(1) Let A be a 2×2 matrix with eigenvalues 1 and 4 . Let $\operatorname{Ker}(A-I)=$ $\operatorname{Span}\left\{\left[\begin{array}{r}-2 \\ 1\end{array}\right]\right\}$ and $\operatorname{Ker}(A-4 I)=\operatorname{Span}\left\{\left[\begin{array}{r}3 \\ -1\end{array}\right]\right\}$.
(a) Is A diagonalizable? If yes, write out the diagonalization, else explain why A is not digaonalizable?
(b) Find a diagonal matrix B such that $B^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]$.
(c) Use parts $8(\mathrm{a})$ and $8(\mathrm{~b})$ to find a matrix X such that $X^{2}=A$.
(2) Let A be the matrix $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$.
(a) Find the eigenvalues and eigenspaces of A. Write down an orthogonal basis of \mathbb{R}^{2} consisting of eigenvectors of A.
(b) Find a orthogonal basis of \mathbb{R}^{2} consisting of eigenvectors of A.
(c) Let T denote the transformation described by A. Write down the matrix of T with respect to the new eigenbasis you wrote down in 2(a).
(d) Explain what the diagonalization of A describes in terms of T.

3 Solve the following system of differential equations.

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =x_{1}(t)-2 x_{2}(t) \\
\frac{d x_{2}}{d t} & =2 x_{1}(t)+x_{2}(t)
\end{aligned}
$$

Given $x_{1}(0)=1$ and $x_{2}(0)=-1$. What happens to $x_{1}(t), x_{2}(t)$ as $t \rightarrow \infty$?
(3) Answer the following in short. Give justification for your answers.
(a) Let $\operatorname{det}\left[\begin{array}{llc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=6$. Find $\operatorname{det}\left[\begin{array}{rrr}a+2 d & b+2 e & c+2 f \\ g & h & i \\ 2 d & 2 e & 2 f\end{array}\right]$.
(b) Let $V=\operatorname{Span}\left\{\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ -1 \\ -2\end{array}\right]\right\}$. Find a basis of V.
(c) Give an example of a 3×3 matrix A with eigenvalues $5,-1$ and 3 .
(d) If A is a 3×3 orthogonal matrix find all possible values of its determinant.
(e) Let $A^{2}=I$. Find Ker A.
(4) State true or false with justification.
(a) Let A be a 3×3 matrix. If $A x=0$ has infinitely many solutions then the column vectors of A span \mathbb{R}^{3}.
(b) Let A be a 3×3 matrix with a set of eigenvectors spanning \mathbb{R}^{3}. Then A is diagonalizable.
(c) Let A be a 3×3 matrix with linearly independent column vectors. Then A is diagonalizable.
(d) If A is an invertible 3×3 matrix then $A B=A C$ implies $B=C$.
(5) State whether the following are subspaces of \mathbb{R}^{3}. Justify your answers.
(a) $\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right] / \begin{array}{c}x+y=-z \\ 2 x-1=\end{array}\right\}$.
(b) $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$.
(6) Write short answers to the following.
(i) Let $\left[\begin{array}{ccc}1 & 3 & -1 \\ 0 & -5 & 2 \\ 2 & -1 & 0\end{array}\right]$ be the inverse of A. Find an appropriate matrix X so that $X A=\left[\begin{array}{ll}1 & 2 \\ 1 & 1 \\ 0 & 3\end{array}\right]^{T}$. Is X invertible? Why or why not?
(ii) A is a diagonalizable 2×2 matrix with eigenvalues 1 and -1 . Show that $A^{2}=I$.
(iii) A is a $n \times n$ matrix such that $A A^{T}=I$. What values can determinant of A take?
(iv) If $\left\{v_{1}, v_{2}, v_{3}\right\}$ are linearly independent vectors in \mathbb{R}^{5} and $v_{4}=v_{3}$ $v_{2}+v_{1}$, then is $\left\{v_{1}, v_{2}, v_{4}\right\}$ is linearly independent? Why or why not?
(v) If A has eigenvalues 1,3 and $\frac{2}{3}$, find determinant of A.
(vi) If A is a invertible 3×3 matrix and v_{1}, v_{2}, v_{3} are linearly indpendent vectors in \mathbb{R}^{3}. Show that $A v_{1}, A v_{2}, A v_{3}$ are linearly independent.
(7) State True or False with justification.(No points for just stating true or false)
(i) Let $C=A B$ for 4×4 matrices A and B. If C is invertible then A is invertible.
(ii) Let W be a subspace of \mathbb{R}^{4} and v be a vector in \mathbb{R}^{4}. If $v \in W$ and $v \in W^{\perp}$ then $v=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$.
(iii) Let V be a vector space and W be a subspace of V. If $\operatorname{Dim} W=$ $\operatorname{Dim} V$ then $W=V$.
(iv) If A is a invertible 3×3 matrix and B and C are 3×3 matrices, then $A B=A C$ implies $B=C$.

