\qquad

Practice Exam 2 40pts.

- There are 6 pages in the exam including this page.
- Write all your answers clearly. You have to show work to get points for your answers.
- You can write on both sides of the paper. Indicate that the answer follows on the back of the page.
- Use of Calculators is not allowed during the exam.
(1) $\ldots \ldots . . . / 8$
(2) $\ldots \ldots \ldots / 8$
(3) $\ldots \ldots \ldots / 8$
(4) $\ldots \ldots . / 16$

Total / /40
(1) 8pts. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be defined by a matrix

$$
A=\left[\begin{array}{rrrr}
1 & 0 & -2 & 2 \\
0 & 1 & -1 & 0 \\
3 & 2 & 0 & 1 \\
1 & -1 & 0 & 4
\end{array}\right]
$$

(a) Find the Kernel of T.
(b) Is T invertible? Why or why not?
(2a) 3pts When is a set of vectors $\left\{v_{1}, \cdots, v_{n}\right\}$ in a vector space V said to be a basis of V ?
(2b) 5pts. Let $A=\left[\begin{array}{rrrr}1 & 2 & 0 & 1 \\ 0 & 4 & 1 & 2 \\ -1 & 2 & 1 & 1 \\ 2 & 0 & -1 & 0\end{array}\right]$ represent a linear transformation from T : $\mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$. Find a basis for the $\operatorname{Im} T$.
(3) $8 p t s$. Check if the following sets are subspaces of \mathbb{R}^{3} and \mathbb{R}^{4} respectively or not. Explain your answers.
(a) $W=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: \begin{array}{c}x-y+z=0 \\ x+1-2 z=0\end{array}\right\}$
(b) $V=\left\{\left[\begin{array}{r}0 \\ a+b \\ c \\ c-5 a\end{array}\right]: a, b, c \in \mathbb{R}\right\}$.
(4) 16pts. Give short answers to the following.
(a) If A and B are 2×2 matrices such that $A B=0$ then, either $A=0$ or $B=0$.
(b) Suppose that A is a 3×3 matrix such that $A x=x$ for all $x \in \mathbb{R}^{3}$. Let I_{3} be the 3×3 identity matrix. Find $\operatorname{Ker}\left(A-I_{3}\right)$, that is the Kernel of the transformation represented by $A-I_{3}$.
(c) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation which maps a vector $v \in \mathbb{R}^{2}$ to its reflection along a line along $\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Describe the matrix of this transformation.
(d) Is $\left\{\left[\begin{array}{r}1 \\ 3 \\ -1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{r}4 \\ 5 \\ -1\end{array}\right]\right\}$ a basis of \mathbb{R}^{3} ? Why or why not?

