PARTIAL SOLUTIONS TO THE SAMPLE QUESTIONS FOR THE FINAL

- (1) Let A be a 2 × 2 matrix with eigenvalues 1 and 4. Let Ker (A I) =Span $\left\{ \begin{bmatrix} -2\\ 1 \end{bmatrix} \right\}$ and Ker (A 4I) = Span $\left\{ \begin{bmatrix} 3\\ -1 \end{bmatrix} \right\}$.
 - (a) Is A diagonalizable? If yes, write out the diagonalization, else explain why A is not digaonalizable?
 - Hint. Since A is a 2×2 matrix with 2 distinct eigenvalues, A is diagonalizable. The space Ker (A - I) is the eigenspace of $\lambda = 1$ and Ker (A - 4I) is the eigenspace of $\lambda = 4$. So now given the eigenvectors we can diagonalize the matrix., $A = SDS^{-1}$ where S consists of the eigenvectors and D has its diagonal elements as the eigenvalues.
 - (b) Find a diagonal matrix B such that $B^2 = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$.
 - Ans. We just need to take square root of the diagonal elements since Bhas to be diagonal.
 - (c) Use parts 8(a) and 8(b) to find a matrix X such that $X^2 = A$.
- Ans. Now $A = SDS^{-1}$ and $D = B^2$. Substitute to find X. (2) Let A be the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. (a) Find the eigenvalues and eigenspaces of A.

 - Ans. Eigenvalues are 1 and 3 with eigenspaces $\operatorname{Span}\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$, $\operatorname{Span}\left\{ \begin{bmatrix} -1\\1 \end{bmatrix} \right\}$. (b) Find a orthogonal basis of \mathbb{R}^2 consisting of eigenvectors of A.
 - ΓΊΤΓ

Ans.
$$\mathcal{B} = \{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \}.$$

- (c) Let T denote the transformation described by A. Write down the matrix of T with respect to the new eigenbasis you wrote down in 2(a).
- Ans. The matrix of T with respect to \mathcal{B} is given by $\begin{vmatrix} 1 & 0 \\ 0 & 3 \end{vmatrix}$
- (d) Explain what the diagonalization of A describes in terms of T.
- Ans. The equality $A = SDS^{-1}$ describes the relation between the transformation T in standard coordinates and that in \mathcal{B} coordinates.
- 3 Solve the following system of differential equations.

$$\frac{dx_1}{dt} = x_1(t) - 2x_2(t)
\frac{dx_2}{dt} = 2x_1(t) + x_2(t)$$

Given $x_1(0) = 1$ and $x_2(0) = -1$. What happens to $x_1(t), x_2(t)$ as $t \to \infty$?

Ans. We find out that the matrix has eigenvalues $1 \pm 2i$ and therefore,

$$\begin{aligned} x(t) &= c_1 e^{(1+2i)t} \vec{v}_1 + c_2 e^{(1-2i)t} \vec{v}_2 \\ &= e^t (c_1 e^{(2i)t} \vec{v}_1 + c_2 e^{(-2i)t} \vec{v}_2) \end{aligned}$$

As $t \to \infty$, x(t), $e^t \to \infty$. Therefore x(t) takes values in an outward elliptic spiral.

(3) Answer the following in short. Give justification for your answers.

(a) Let det
$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} = 6$$
. Find det $\begin{bmatrix} a+2d & b+2e & c+2f \\ g & h & i \\ 2d & 2e & 2f \end{bmatrix}$.
Ans. det $\begin{bmatrix} a+2d & b+2e & c+2f \\ g & h & i \\ 2d & 2e & 2f \end{bmatrix} = -12$
(b) Let $V = \text{Span} \{ \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ -2 \end{bmatrix} \}$. Find a basis of V .

Ans. We need to find out which ones of these vectors are linearly independent.

$$a_{1}\begin{bmatrix}1\\1\\-1\end{bmatrix}+a_{2}\begin{bmatrix}2\\3\\0\end{bmatrix}+a_{3}\begin{bmatrix}0\\-1\\-2\end{bmatrix} = \vec{0}$$
$$\begin{bmatrix}1&2&0&|&0\\1&3&-1&|&0\\-1&0&-2&|&0\end{bmatrix}$$
$$\begin{bmatrix}1&2&0&|&0\\0&1&-1&|&0\\0&2&-2&|&0\end{bmatrix}$$
$$\begin{bmatrix}1&2&0&|&0\\0&1&-1&|&0\\0&0&0&|&0\end{bmatrix}$$

We can see that the two pivots are 1 and 1. This shows that $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$ and $\begin{bmatrix} 2\\3\\0 \end{bmatrix}$ are linearly independent and span V. Therefore, they form a basis of V form a basis of V.

(c) Give an example of a
$$3 \times 3$$
 matrix A with eigenvalues 5, -1 and 3.
Ans. $\begin{bmatrix} 5 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.

- (d) If A is a 3×3 orthogonal matrix find all possible values of its determinant.
- Ans. det $A = \pm 1$
 - (e) Let $A^2 = I$. Find Ker A.
- Ans. A is invertible \implies that Ker $A = \vec{0}$.
- (4) State true or false with justification.
 - (a) Let A be a 3×3 matrix. If Ax = 0 has infinitely many solutions then the column vectors of A span \mathbb{R}^3 .
 - Ans. False : If Ax = 0 has infinitely many solutions than A is not invertible and therefore the column vectors are not linearly independent and cannot span \mathbb{R}^3 .
 - (b) Let A be a 3×3 matrix with a set of eigenvectors spanning \mathbb{R}^3 . Then A is diagonalizable.
 - Ans. True. If the eigenvectors span \mathbb{R}^3 then there exist 3 linearly independent eigenvectors of A and therefore, A is diagonalizable.
 - (c) Let A be a 3×3 matrix with linearly independent column vectors. Then A is diagonalizable.

Ans. False : For instance $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{bmatrix}$. is invertible but not diagonalizable.

ne.

(d) If A is an invertible 3×3 matrix then AB = AC implies B = C. Ans. True. Multiply both sides by A^{-1} .

(5) State whether the following are subspaces of \mathbb{R}^3 . Justify your answers.

(a)
$$\left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} \middle| \begin{array}{c} x+y &= -z \\ 2x-1 &= y \end{array} \right\}$$
.
Ans. False: Does not have the 0 vector.
(b) $\left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$.

Ans. True : check to see it has all the right properties. (6) Write short answers to the following.

(i) Let
$$\begin{bmatrix} 1 & 3 & -1 \\ 0 & -5 & 2 \\ 2 & -1 & 0 \end{bmatrix}$$
 be the inverse of A . Find an appropriate matrix X so that $XA = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 0 & 3 \end{bmatrix}^T$. Is X invertible? Why or why not?
Ans. $X = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 0 & 3 \end{bmatrix}^T A^{-1}$. X cannot be invertible since it is not a square matrix.

- (ii) A is a diagonalizable 2×2 matrix with eigenvalues 1 and -1. Show that $A^2 = I$.
- Ans. Write down the diagonalization of A.
- (iii) A is a $n \times n$ matrix such that $AA^T = I$. What values can determinant of A take?
- Ans. Apply determinants to the equation $AA^T = I$.
- (iv) If $\{v_1, v_2, v_3\}$ are linearly independent vectors in \mathbb{R}^5 and $v_4 = v_3 v_2 + v_1$, then is $\{v_1, v_2, v_4\}$ is linearly independent? Why or why not?
- Ans. Write down equation $a_1v_1 + a_2v_2 + a_3v_4 = \vec{0}$ and substitute for v_4 . Use linear independence of v_1, v_2, v_3 to show that $a_1 = a_2 = a_3 = 0$.
 - (v) If A has eigenvalues 1, 3 and $\frac{2}{3}$, find determinant of A.

Ans. determinant = 2 (product of the eigenvalues).

(vi) If A is a invertible 3×3 matrix and v_1, v_2, v_3 are linearly indpendent vectors in \mathbb{R}^3 . Show that Av_1, Av_2, Av_3 are linearly independent.

Ans. Similar to part iv

- (7) State True or False with justification.(No points for just stating true or false)
 - (i) Let C = AB for 4×4 matrices A and B. If C is invertible then A is invertible.
 - Ans. Use determinant to observe that determinant of A has to be nonzero and hence A has to be invertible. True!
 - (ii) Let W be a subspace of \mathbb{R}^4 and v be a vector in \mathbb{R}^4 . If $v \in W$ and $\begin{bmatrix} 0 \end{bmatrix}$

$$v \in W^{\perp}$$
 then $v = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$

Ans. If $v \in W$ and $v \in W^{\perp}$ then $v \cdot v = 0$ therefore v = 0.

- (iii) Let V be a vector space and W be a subspace of V. If Dim W = Dim V then W = V.
- Ans. If Dim W = Dim V = k. Then W has k linearly independent vectors in it which span W. But $W \subset V$ implies these vectors are in V also and are linearly independent and since Dim V = k they have to span V. Therefore W = V.
- (iv) If A is a invertible 3×3 matrix and B and C are 3×3 matrices, then AB = AC implies B = C.
- Ans. Multiply by A^{-1} .