Name \qquad

Suggested Answers to Practice Exam 2
 Math 201

(1) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be defined by a matrix

$$
A=\left[\begin{array}{rrrr}
1 & 0 & -2 & 2 \\
0 & 1 & -1 & 0 \\
3 & 2 & 0 & 1 \\
1 & -1 & 0 & 4
\end{array}\right]
$$

(a) Find the Kernel of T.

Soln: $\operatorname{Ker}(A)=\left\{\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\right\}$.
(b) Is T invertible? Why or why not?

Soln: Yes T is invertible. This is because if Ker $A=\overrightarrow{0}$, then A has full Rank $=4$. This means A is invertible.
(2a) 3pts When is a set of vectors $\left\{v_{1}, \cdots, v_{n}\right\}$ in a vector space V said to be a basis of V ?
Soln: A set of vectors $\left\{v_{1}, \cdots, v_{n}\right\}$ in a vector space V said to be a basis of V if it is linearly independent and $\operatorname{Span}\left\{v_{1}, \cdots, v_{n}\right\}=V$.
(2b) 5pts. Let $A=\left[\begin{array}{rrrr}1 & 2 & 0 & 1 \\ 0 & 4 & 1 & 2 \\ -1 & 2 & 1 & 1 \\ 2 & 0 & -1 & 0\end{array}\right]$ represent a linear transformation from T : $\mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$. Find a basis for the $\operatorname{Im} T$.
Soln: $\operatorname{Im}(T)=\operatorname{Span}\left\{\left[\begin{array}{r}1 \\ 0 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ 1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 0\end{array}\right]\right\}$. To find the basis we
only need to get rid of the linearly dependent vectors. The idea is to find the row echelon form for A to identify the linearly independent columns.

$$
\left[\begin{array}{rrrr}
1 & 2 & 0 & 1 \\
0 & 4 & 1 & 2 \\
-1 & 2 & 1 & 1 \\
2 & 0 & -1 & 0
\end{array}\right]
$$

Do R3 + R1 and R4-2R1 to get,

$$
\left[\begin{array}{rrrr}
1 & 2 & 0 & 1 \\
0 & 4 & 1 & 2 \\
0 & 4 & 1 & 2 \\
0 & -4 & -1 & -2
\end{array}\right]
$$

Row operations R3-R2 and R4-R2 imply,

$$
\left[\begin{array}{llll}
1 & 2 & 0 & 1 \\
0 & 4 & 1 & 2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

The pivot columns give the linearly independent columns of A which span the column space of A. Therefore, a basis for the column space of A will be $\left\{\left[\begin{array}{r}1 \\ 0 \\ -1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 4 \\ 2 \\ 0\end{array}\right]\right\}$
(3) 8pts. Check if the following sets are subspaces of \mathbb{R}^{3} and \mathbb{R}^{4} respectively or not. Explain your answers.

$$
\text { (a) } W=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]: \begin{array}{c}
x-y+z=0 \\
x+1-2 z=0
\end{array}\right\}
$$

Soln: No, W is not a subspace of \mathbb{R}^{3} and hence not a vectorspace under usual vector addition and scalar multiplication. This is because the vector $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ is not in the set as $0+1-2(0) \neq 0$.
(b) $V=\left\{\left[\begin{array}{r}0 \\ a+b \\ c \\ c-5 a\end{array}\right]: a, b, c \in \mathbb{R}\right\}$.

Soln: Any vector in V is given by $\left[\begin{array}{r}0 \\ a+b \\ c \\ c-5 a\end{array}\right]$ for some real numbers a, b and c. Now,

$$
\left[\begin{array}{r}
0 \\
a+b \\
c \\
c-5 a
\end{array}\right]=a\left[\begin{array}{r}
0 \\
1 \\
0 \\
-5
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]+c\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

Hence, $V=\operatorname{Span}\left\{\left[\begin{array}{r}0 \\ 1 \\ 0 \\ -5\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]\right\}$. Thus, we conclude that V is a vector space since it can be written as a span of a set of vectors.
(4) 16pts. Give short answers to the following.
(a) If A and B are 2×2 matrices such that $A B=0$ then, either $A=0$ or $B=0$.

Soln: False. For example $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$
(b) Suppose that A is a 3×3 matrix such that $A x=x$ for all $x \in \mathbb{R}^{3}$. Let I_{3} be the 3×3 identity matrix. Find $\operatorname{Ker}\left(A-I_{3}\right)$, that is the Kernel of the transformation represented by $A-I_{3}$.

Soln: We are given that $A x=x$ for all $x \in \mathbb{R}^{3}$. This means that $A x=I x$ since I is the identity matrix. Then we have that $A x-I x=0$ for all $x \in \mathbb{R}^{3}$. Finally this means $(A-I) x=0$ for all $x \in \mathbb{R}^{3}$.
(c) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the transformation which maps a vector $v \in \mathbb{R}^{2}$ to its reflection along a line along $\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Describe the matrix of this transformation.

Soln: You can use formula to check that T maps $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ to $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ to $\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Thus the matrix is given by $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
(d) Is $\left\{\left[\begin{array}{r}1 \\ 3 \\ -1\end{array}\right],\left[\begin{array}{l}3 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{r}4 \\ 5 \\ -1\end{array}\right]\right\}$ a basis of \mathbb{R}^{3} ? Why or why not?

Soln: For the given set to be a basis of \mathbb{R}^{3} it has to be linearly independent and has to span \mathbb{R}^{3}. Now, to check for linear independence we solve the homogeneous system with these vectors as the columns of the coefficient matrix. The augmented matrix for the system will be

$$
\left[\begin{array}{rrrr}
1 & 3 & 4 & 0 \\
3 & 2 & 5 & 0 \\
-1 & 0 & -1 & 0
\end{array}\right]
$$

By row operations R2-3 R1 and R3 + R1

$$
\left[\begin{array}{rrrr}
1 & 3 & 4 & 0 \\
0 & -7 & -7 & 0 \\
0 & 3 & 3 & 0
\end{array}\right]
$$

R3-3/7 R2

$$
\left[\begin{array}{rrrr}
1 & 3 & 4 & 0 \\
0 & -7 & -7 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

This implies these vectors are linearly dependent and cannot form a basis of \mathbb{R}^{3}.

