Partial solutions to Sample questions for the final
Please use these only as a reference, there might be typos and errors.
(1) Let A be a 2×2 matrix with eigenvalues 1 and 4 . Let $\operatorname{Ker}(A-I)=$ $\operatorname{Span}\left\{\left[\begin{array}{r}-2 \\ 1\end{array}\right]\right\}$ and $\operatorname{Ker}(A-4 I)=\operatorname{Span}\left\{\left[\begin{array}{r}3 \\ -1\end{array}\right]\right\}$.
(a) Is A diagonalizable? If yes, write out the diagonalization, else explain why A is not digaonalizable?
Hint. Since A is a 2×2 matrix with 2 distinct eigenvalues, A is diagonalizable. The space $\operatorname{Ker}(A-I)$ is the eigenspace of $\lambda=1$ and $\operatorname{Ker}(A-4 I)$ is the eigenspace of $\lambda=4$. So now given the eigenvectors we can diagonalize the matrix., $A=S D S^{-1}$ where S consists of the eigenvectors and D has its diagonal elements as the eigenvalues.
(b) Find a diagonal matrix B such that $B^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]$.

Ans. We just need to take square root of the diagonal elements since B has to be diagonal.
(c) Use parts $1(\mathrm{a})$ and $1(\mathrm{~b})$ to find a matrix X such that $X^{2}=A$.

Ans. Now $A=S D S^{-1}$ and $D=B^{2}$. Substitute to find X.
(2) Let A be the matrix $\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$.
(a) Find the eigenvalues and eigenspaces of A.

Ans. Eigenvalues are 1 and 3 with eigenspaces $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}, \operatorname{Span}\left\{\left[\begin{array}{r}-1 \\ 1\end{array}\right]\right\}$.
(b) Find a orthogonal basis of \mathbb{R}^{2} consisting of eigenvectors of A.

Ans. $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{r}-1 \\ 1\end{array}\right]\right\}$.
(c) Let T denote the transformation described by A. Write down the matrix of T with respect to the new eigenbasis you wrote down in 2(a).
Ans. The matrix of T with respect to \mathcal{B} is given by $\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$
(d) Explain what the diagonalization of A describes in terms of T.

Ans. The equality $A=S D S^{-1}$ describes the relation between the transformation T in standard coordinates and that in \mathcal{B} coordinates.
(3) Solve the following system of differential equations.

$$
\begin{aligned}
& \frac{d x_{1}}{d t}=x_{1}(t)-2 x_{2}(t) \\
& \frac{d x_{2}}{d t}=2 x_{1}(t)+x_{2}(t)
\end{aligned}
$$

Given $x_{1}(0)=1$ and $x_{2}(0)=-1$. What happens to $x_{1}(t), x_{2}(t)$ as $t \rightarrow \infty$?

Ans. We find out that the matrix has eigenvalues $1 \pm 2 i$ and therefore,

$$
\begin{aligned}
x(t) & =c_{1} \mathrm{e}^{(1+2 i) t} \vec{v}_{1}+c_{2} \mathrm{e}^{(1-2 i) t} \vec{v}_{2} \\
& =\mathrm{e}^{t}\left(c_{1} \mathrm{e}^{(2 i) t} \vec{v}_{1}+c_{2} \mathrm{e}^{(-2 i) t} \vec{v}_{2}\right)
\end{aligned}
$$

As $t \rightarrow \infty, x(t), \mathrm{e}^{t} \rightarrow \infty$. Further given the form of the matrix in the dynamical system, we can say that $x(t)$ takes values in an outward circular spiral. (you need the last bit only if the question asks for a phase potrait.)
(4) Find all solutions in C^{∞} to the differential equation

$$
f^{\prime \prime \prime}(t)+f^{\prime}(t)=e^{t}
$$

given that $f_{p}(t)=e^{t} / 2$ satisfies the equation.
Ans. Given the particular solution you only need to find solutions to

$$
f^{\prime \prime \prime}(t)+f^{\prime}(t)=0 .
$$

Eigenfunction gives solution $\lambda= \pm i$. Then solutions to the differential equation are given by

$$
f(t)=c_{1} \cos t+c_{2} \sin t+e^{t} / 2
$$

for real numbers c_{1} and c_{2}.
(5) Answer the following in short. Give justification for your answers.
(a) Let $\operatorname{det}\left[\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]=6$. Find $\operatorname{det}\left[\begin{array}{rrr}a+2 d & b+2 e & c+2 f \\ g & h & i \\ 2 d & 2 e & 2 f\end{array}\right]$.

Ans. $\operatorname{det}\left[\begin{array}{rrr}a+2 d & b+2 e & c+2 f \\ g & h & i \\ 2 d & 2 e & 2 f\end{array}\right]=-12$
(b) Let $V=\operatorname{Span}\left\{\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ -1 \\ -2\end{array}\right]\right\}$. Find a basis of V.

Ans. We need to find out which ones of these vectors are linearly independent.

$$
\begin{aligned}
& a_{1}\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]+a_{2}\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]+a_{3}\left[\begin{array}{r}
0 \\
-1 \\
-2
\end{array}\right]=\overrightarrow{0} \\
& {\left[\begin{array}{rrr|r}
1 & 2 & 0 & 0 \\
1 & 3 & -1 & 0 \\
-1 & 0 & -2 & 0
\end{array}\right] } \\
& {\left[\begin{array}{rrr|r}
1 & 2 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 2 & -2 & 0
\end{array}\right] } \\
& {\left[\begin{array}{rrr|r}
1 & 2 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] }
\end{aligned}
$$

We can see that the two pivots are 1 and 1 . This shows that $\left[\begin{array}{r}1 \\ 1 \\ -1\end{array}\right]$ and $\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]$ are linearly independent and span V. Therefore, they form a basis of V.
(c) Give an example of a 3×3 matrix A with eigenvalues $5,-1$ and 3 .

Ans. $\left[\begin{array}{rrr}5 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 3\end{array}\right]$.
(d) If A is a 3×3 orthogonal matrix find all possible values of its determinant.
Ans. $\operatorname{det} A= \pm 1$
(e) Let $A^{2}=I$. Find Ker A.

Ans. A is invertible \Longrightarrow that $\operatorname{Ker} A=\overrightarrow{0}$.
(6) State true or false with justification.
(a) Let A be a 3×3 matrix. If $A x=0$ has infinitely many solutions then the column vectors of A span \mathbb{R}^{3}.
Ans. False : If $A x=0$ has infinitely many solutions than A is not invertible and therefore the column vectors are not linearly independent and cannot span \mathbb{R}^{3}.
(b) Let A be a 3×3 matrix with a set of eigenvectors spanning \mathbb{R}^{3}. Then A is diagonalizable.
Ans. True. If the eigenvectors span \mathbb{R}^{3} then there exist 3 linearly independent eigenvectors of A and therefore, A is diagonalizable.
(c) Let A be a 3×3 matrix with linearly independent column vectors. Then A is diagonalizable.

Ans. False : For instance $\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2\end{array}\right]$ is invertible but not diagonalizable.
(d) If A is an invertible 3×3 matrix then $A B=A C$ implies $B=C$.

Ans. True. Multiply both sides by A^{-1}.
(7) State whether the following are subspaces of \mathbb{R}^{3}. Justify your answers.
(a) $\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right] / \begin{array}{c}x+y=-z \\ 2 x-1=\end{array}\right\}$.

Ans. False: Does not have the 0 vector.
(b) $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$.

Ans. True : check to see it has all the right properties.
(8) Write short answers to the following.
(i) Let $\left[\begin{array}{ccc}1 & 3 & -1 \\ 0 & -5 & 2 \\ 2 & -1 & 0\end{array}\right]$ be the inverse of A. Find an appropriate matrix X so that $X A=\left[\begin{array}{ll}1 & 2 \\ 1 & 1 \\ 0 & 3\end{array}\right]^{T}$. Is X invertible? Why or why not?
Ans. $X=\left[\begin{array}{ll}1 & 2 \\ 1 & 1 \\ 0 & 3\end{array}\right]^{T} A^{-1} . X$ cannot be invertible since it is not a square matrix.
(ii) A is a diagonalizable 2×2 matrix with eigenvalues 1 and -1 . Show that $A^{2}=I$.

Ans. Write down the diagonalization of A.
(iii) A is a $n \times n$ matrix such that $A A^{T}=I$. What values can determinant of A take?

Ans. Apply determinants to the equation $A A^{T}=I$.
(iv) If $\left\{v_{1}, v_{2}, v_{3}\right\}$ are linearly independent vectors in \mathbb{R}^{5} and $v_{4}=v_{3}$ $v_{2}+v_{1}$, then is $\left\{v_{1}, v_{2}, v_{4}\right\}$ is linearly independent? Why or why not?

Ans. Write down equation $a_{1} v_{1}+a_{2} v_{2}+a_{3} v_{4}=\overrightarrow{0}$ and substitute for v_{4}. Use linear independence of v_{1}, v_{2}, v_{3} to show that $a_{1}=a_{2}=a_{3}=0$.
(v) If A has eigenvalues 1,3 and $\frac{2}{3}$, find determinant of A.

Ans. determinant $=2$ (product of the eigenvalues).
(vi) If A is a invertible 3×3 matrix and v_{1}, v_{2}, v_{3} are linearly indpendent vectors in \mathbb{R}^{3}. Show that $A v_{1}, A v_{2}, A v_{3}$ are linearly independent.

Ans. Similar to part iv
(9) Let

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

(a) Find the orthogonal diagonalization of A.

Ans. Eigenvalues are 1 and 3. The corresponding eigenspaces are $\operatorname{Span}\left\{\left[\begin{array}{r}1 \\ -1\end{array}\right]\right\}$ and $\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$. Normalize these vectors to get the orthogonal diagonalization

$$
A=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]^{T}
$$

(b) Does the following equation represent an ellipse or a hyperbola.

$$
2 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}=1
$$

Ans. We can write the above equation as

$$
\begin{aligned}
{\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =1 \\
{\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]^{T}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =1
\end{aligned}
$$

$$
\text { Let }\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]^{T}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

Then we get

$$
c_{1}^{2}+3 c_{2}^{2}=1
$$

Clearly this describes an ellipse with minor, major axis along $\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}}\end{array}\right]$ and $\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$.
State True or False with justification.
(i) Let $C=A B$ for 4×4 matrices A and B. If C is invertible then A is invertible.

Ans. Use determinant to observe that determinant of A has to be nonzero and hence A has to be invertible. True!
(ii) Let W be a subspace of \mathbb{R}^{4} and v be a vector in \mathbb{R}^{4}. If $v \in W$ and $v \in W^{\perp}$ then $v=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$.
Ans. If $v \in W$ and $v \in W^{\perp}$ then $v . v=0$ therefore $v=0$.
(iii) Let V be a vector space and W be a subspace of V. If $\operatorname{Dim} W=$ $\operatorname{Dim} V$ then $W=V$.

Ans. If $\operatorname{Dim} W=\operatorname{Dim} V=k$. Then W has k linearly independent vectors in it which span W. But $W \subset V$ implies these vectors are in V also and are linearly independent and since $\operatorname{Dim} V=k$ they have to span V. Therefore $W=V$.
(iv) If A is a invertible 3×3 matrix and B and C are 3×3 matrices, then $A B=A C$ implies $B=C$.

Ans. Multiply by A^{-1}.

