MATH 110.201
Partial Solutions to Review Exercises
Note you are expected to fill in the details, this is just to help you check your answers

- Determine whether or not the following sets span \mathbb{R}^{2}.
(a) $\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2\end{array}\right]\right\}$.

Ans: Yes, because this is a linearly indepedent set with two vectors and dimension of \mathbb{R}^{2} is 2 .
(b) $\left\{\left[\begin{array}{c}-2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right\}$

Ans: Yes, because it has two linearly independent vectors.

- Give short answers to the following.
(a) Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ span a vector space V and $v_{3} \in \operatorname{Span}\left\{v_{1}, v_{2}\right\}$. Show that $\operatorname{Span}\left\{v_{1}, v_{2}\right\}=V$.
Ans: Show that you can write any $v \in V$ as a linear combination of v_{1} and v_{2}.
(b) If $A x=0$ for all $x \in \mathbb{R}^{3}$. Find $\operatorname{Ker}(A)$.

Ans: It should be \mathbb{R}^{3}. Explain why?
(c) If A is a 4×6 matrix with $\operatorname{dim} \operatorname{Ker}(A)=2$. How many pivots does A have ? Why?
Ans: Use Rank Nulity theorem.

- Let V be a vector space of dimension 4 and W be a subspace of V.
(a) What are the minimum and maximum dimensions W can have? Why?
Ans: Dimension of a subspace is always less than that of the vectorspace in which it is contained. What is the minimum dimension any space can have?
(b) Let $\left\{w_{1}, w_{2}, w_{3}\right\}$ span W and $w_{4} \in V$ be such that $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ is linearly independent. What is the dimension of W ? State the properties of linearly independent sets you are using.
Ans: 3. Subset of a linearly independent set is linearly independent. How can you apply this here?
- Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined as

$$
T\left(\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
y_{1}+y_{2} \\
y_{1}-y_{2} \\
y_{3}
\end{array}\right]
$$

(a) Find the Kernel of T.

Ans: Solve the system to see that Kernel $T=\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$.
(b) Is T invertible? Explain why or why not?

Ans. Yes. This should follow from previous problem.

- Is $W=\left\{\left[\begin{array}{c}a-b \\ b \\ 0\end{array}\right]: a, b \in \mathbb{R}\right\}$ a subspace of \mathbb{R}^{3} (This is the set of vectors in \mathbb{R}^{4} of the form $\left[\begin{array}{c}a-b \\ b \\ 0\end{array}\right]$ for all possible real values of a and b)?
(a) Show that W is a subspace of \mathbb{R}^{3}.

Ans. You can check all the three conditions,

* if the $\overrightarrow{0}$ is of the form $\left[\begin{array}{c}a-b \\ b \\ 0\end{array}\right]$,
* sum of two vectors of this form $\left[\begin{array}{c}a-b \\ b \\ 0\end{array}\right]$ and $\left[\begin{array}{c}c-d \\ d \\ 0\end{array}\right]$ is of this form again and
* the scalar multiple of $\left[\begin{array}{c}a-b \\ b \\ 0\end{array}\right]$ is of the same form.

Alternately, you can write W as a span of vectors and use the theorem that span of vectors is subspace.
(b) Find a basis for W.

Ans. Note $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]\right\}$. Both these vectors are linearly independent because they are not scalar multiples of each other. Therefore, $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]\right\}$ is a basis of W.

- State whether the following statements are true or false. If true, explain your answer. If false, give an example for which the statement is false.
(a) Let W be a subspace of \mathbb{R}^{4}. If $W=\operatorname{Span}\left\{\vec{w}_{1}, \cdots, \vec{w}_{k}\right\}$ for vectors $\vec{w}_{1}, \cdots, \vec{w}_{k}$ in \mathbb{R}^{4} and the dimension of W is 3 then $k=3$.

Ans. False, $\left\{w_{1}, \cdots, w_{k}\right\}$ can be linearly dependent, give an example where the statement is not true.
(b) If A is a orthogonal 3×3 matrix then $\operatorname{det} A>0$.

Ans. False, give example.

- Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined as

$$
T\left(\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
y_{1}+y_{2} \\
y_{1}-y_{3} \\
0
\end{array}\right]
$$

(a) Find a basis of the Image of T.

Soln: The Image of T is the set of vectors in \mathbb{R}^{3} which are of the form $T(\vec{y})$ for some $\vec{y} \in \mathbb{R}^{3}$.
Then

$$
\begin{aligned}
T\left(\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right) & =\left[\begin{array}{l}
y_{1}+y_{2} \\
y_{1}-y_{3} \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
y_{1} \\
y_{1} \\
0
\end{array}\right]+\left[\begin{array}{c}
y_{2} \\
0 \\
0
\end{array}\right]+\left[\begin{array}{c}
0 \\
-y_{3} \\
0
\end{array}\right] \\
& =y_{1}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+y_{2}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+y_{3}\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]
\end{aligned}
$$

Then Image of $T=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 0\end{array}\right]\right\}$
Clearly $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 0\end{array}\right]\right\}$ is a linearly independent set and $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]=$ $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]-\left[\begin{array}{c}0 \\ -1 \\ 0\end{array}\right]$.
Therefore, the basis for image of $T=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -1 \\ 0\end{array}\right]\right\}$.
(b) What is the Rank of the matrix defining the linear transformation T ? Explain your answer.

Soln: The matrix representing T is $A=\left[\begin{array}{ccc}1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0\end{array}\right]$. This will have
Rank 2 since the dimension of Image $T=$ Rank of the matrix A.

- Let $W=\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a+b+c=0\right\}$ (that is, the set of all vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \in \mathbb{R}^{3}$ satisfying the equation $\left.a+b+c=0\right)$.
(a) Show that W is a subspace of \mathbb{R}^{3}.

Soln: The subspace W is the set of solutions to the matrix equation

$$
[111]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=[0]
$$

Then we have one equation in three unknowns. We have infinitely many choices for b and c. Further

$$
a=-b-c .
$$

Therefore, vectors in W are of the form

$$
\begin{aligned}
& {\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{r}
-b-c \\
b \\
c
\end{array}\right]} \\
& =\left[\begin{array}{r}
-b \\
b \\
0
\end{array}\right]+\left[\begin{array}{r}
-c \\
0 \\
c
\end{array}\right] \\
& =b\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]+c\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right] \\
& \text { Therefore, } W=\operatorname{Span}\left\{\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

Alternatively,

* We see that $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \in W$ since $0+0+0=0$.
* For any two vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ and $\left[\begin{array}{l}e \\ f \\ g\end{array}\right]$ in W. We know that $a+b+c=0$ and $e+f+g=0$. Then $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]+\left[\begin{array}{l}e \\ f \\ g\end{array}\right]=$ $\left[\begin{array}{l}a+e \\ b+f \\ c+g\end{array}\right]$. But $a+b+c+e+f+g=0+0=0$.
* For any $k \in \mathbb{R}$ and $\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \in W$ we have that $a+b+c=0$. Then $k(a+b+c)=k a+k b+k c=0 \Longrightarrow\left[\begin{array}{l}k a \\ k b \\ k c\end{array}\right] \in W$ for all $k \in \mathbb{R}$.
Then W is a subspace.
(b) Find a basis of W.

Soln: Clearly, no scalar multiple of $\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$ can be equal to $\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$.
The basis of W is $\left\{\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]\right\}$ since they span the set and are linearly independent.

- Let $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$ be a basis of a subspace W of \mathbb{R}^{4}.
(a) Find an orthogonal basis $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ of W. Show work.

Ans. Use Gram Schmidt to obtain an orthogonal basis $\left\{\left[\begin{array}{l}1 / 2 \\ 1 / 2 \\ 1 / 2 \\ 1 / 2\end{array}\right],\left[\begin{array}{r}-1 / 2 \\ 1 / 2 \\ 1 / 2 \\ -1 / 2\end{array}\right]\right\}$ of W.
(b) Let $D=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right]$ and $Q=\left[\vec{u}_{1} \vec{u}_{2}\right]$. Find an upper triangular 2×2 matrix R so that $D=Q R$. Show work.

Ans. Write down column vectors in D in terms of \vec{u}_{1} and \vec{u}_{2} to get that $R=\left[\begin{array}{ll}2 & 1 \\ 0 & 1\end{array}\right]$.

- Let \mathbb{C} be the set of all complex numbers, that is, $\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\}$. Let $T: \mathbb{C} \rightarrow \mathbb{C}$ be the linear transformation defined as $T(a+b i)=-b+a i$
(a) Find the matrix B of the transformation T with respect to the basis $\mathcal{B}=\{1+i, 1-i\}$. Show work.

Ans. Evaluate T at the basis elements and write in \mathcal{B}-coordinates.

$$
B=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
$$

(b) Find the matrix A of the transformation T with respect to the basis $\mathcal{B}^{\prime}=\{1, i\}$. Show work.
Ans. Repeat the same procedure with \mathcal{B}^{\prime} coordinates.
(c) Find a matrix S such that $A=S B S^{-1}$. Show work.

Ans. Note if you find the change of basis matrix S from \mathcal{B}-coordinates to \mathcal{B}^{\prime} coordinates, then it has the correct property.

- What is the dimension of the vector space of all 1×3 matrices $\mathcal{M}_{1 \times 3}$? Explain your answer.
Ans. Dimension is 3 . Write down a basis to explain your answer.
- Let \mathcal{D} denote the space of differentiable functions from $\mathbb{R} \rightarrow \mathbb{R}$. Is the function $<,>: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ defined as

$$
<f, g>=f(0) g^{\prime}(0)+f^{\prime}(0) g(0)
$$

an inner product on \mathcal{D} ?
Ans. False. What happens when $f(x)=x-1$ and you take its inner product with itself?

- Let $V=\operatorname{Span}\left\{\left[\begin{array}{r}-1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{r}0 \\ -1 \\ -2\end{array}\right]\right\}$. Find the dimension of V. Explain your answer.
Ans. Write down the matrix with vectors in $\left\{\left[\begin{array}{r}-1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{r}0 \\ -1 \\ -2\end{array}\right]\right\}$ as the column vectors. Use the pivot elements to pick out which vectors are linearly independent.
- Let $A=\left[\begin{array}{rrr}1 & 2 & -1 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$.
(a) Find the eigenvalues of A.

Ans. Eigenvalues are 2 and 0.
(b) Find the eigenspaces corresponding to eigenvalues of A.

Ans. Eigenspace for 2 is $\operatorname{Span}\left\{\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}\right.$. Eigenspace for eigenvalue 0 is $\operatorname{Span}\left\{\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right]\right\}$.

