November 11, 2009

MATH 110.201 Partial Solutions to Review Exercises

Note you are expected to fill in the details, this is just to help you check your answers

• Determine whether or not the following sets span \mathbb{R}^2 .

(a) $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 3\\2 \end{bmatrix} \right\}$.

Ans: Yes, because this is a linearly indepedent set with two vectors and dimension of \mathbb{R}^2 is 2.

(b) $\left\{ \begin{bmatrix} -2\\1 \end{bmatrix}, \begin{bmatrix} 1\\3 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix} \right\}$

Ans: Yes, because it has two linearly independent vectors.

- Give short answers to the following.
 - (a) Let $\{v_1, v_2, v_3\}$ span a vector space V and $v_3 \in \text{Span}\{v_1, v_2\}$. Show that $\text{Span}\{v_1, v_2\} = V$.
- Ans: Show that you can write any $v \in V$ as a linear combination of v_1 and v_2 .
- (b) If Ax = 0 for all $x \in \mathbb{R}^3$. Find Ker(A).

Ans: It should be \mathbb{R}^3 . Explain why?

- (c) If A is a 4×6 matrix with $\dim \text{Ker}(A) = 2$. How many pivots does A have ? Why?
- Ans: Use Rank Nulity theorem.
- Let V be a vector space of dimension 4 and W be a subspace of V.
 - (a) What are the minimum and maximum dimensions W can have? Why?
 - Ans: Dimension of a subspace is always less than that of the vectorspace in which it is contained. What is the minimum dimension any space can have?
 - (b) Let $\{w_1, w_2, w_3\}$ span W and $w_4 \in V$ be such that $\{w_1, w_2, w_3, w_4\}$ is linearly independent. What is the dimension of W? State the properties of linearly independent sets you are using.
 - Ans: 3. Subset of a linearly independent set is linearly independent. How can you apply this here?

• Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined as

$$T\begin{pmatrix} y_1\\y_2\\y_3 \end{bmatrix} = \begin{bmatrix} y_1+y_2\\y_1-y_2\\y_3 \end{bmatrix}$$

(a) Find the Kernel of T.

Ans: Solve the system to see that
$$\operatorname{Kernel} T = \left\{ \begin{bmatrix} 0\\0\\0 \end{bmatrix} \right\}.$$

- (b) Is T invertible? Explain why or why not?
- Ans. Yes. This should follow from previous problem.
- Is W = { ^a - b ^b 0 : a, b ∈ ℝ} a subspace of ℝ³ (This is the set of vectors in ℝ⁴ of the form ^a - b b 0 (a) Show that W is a subspace of ℝ³. Ans. You can check all the three conditions, * if the 0 is of the form ^a - b b 0 , * sum of two vectors of this form ^a - b b 0] and ^c - d d 0 is of this form again and * the scalar multiple of ^a - b 0] is of the same form. Alternately, you can write W as a span of vectors and use the theorem that span of vectors is subspace. (b) Find a basis for W. Ans. Note W = Span { 1 0 0 , [-1 1 0 0] , [-1 1 0] }. Both these vectors are linearly independent because they are not scalar multiples of each other. There-form { 1 0 1 (-1 1 0)] ; a basis of W.

fore,
$$\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$$
 is a basis of W

- State whether the following statements are true or false. If true, explain your answer. If false, give an example for which the statement is false.
 - (a) Let W be a subspace of \mathbb{R}^4 . If $W = \text{Span}\{\vec{w}_1, \cdots, \vec{w}_k\}$ for vectors $\vec{w}_1, \cdots, \vec{w}_k$ in \mathbb{R}^4 and the dimension of W is 3 then k = 3.

- Ans. False, $\{w_1, \dots, w_k\}$ can be linearly dependent, give an example where the statement is not true.
- (b) If A is a orthogonal 3×3 matrix then det A > 0.

Ans. False, give example.

• Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined as

$$T\left(\left[\begin{array}{c}y_1\\y_2\\y_3\end{array}\right]\right) = \left[\begin{array}{c}y_1+y_2\\y_1-y_3\\0\end{array}\right]$$

- (a) Find a basis of the Image of T.
- Soln: The Image of T is the set of vectors in \mathbb{R}^3 which are of the form $T(\vec{y})$ for some $\vec{y} \in \mathbb{R}^3$. Then

$$T\left(\begin{bmatrix} y_1\\y_2\\y_3\end{bmatrix}\right) = \begin{bmatrix} y_1+y_2\\y_1-y_3\\0\end{bmatrix}$$
$$= \begin{bmatrix} y_1\\y_1\\y_1\\0\end{bmatrix} + \begin{bmatrix} y_2\\0\\0\end{bmatrix} + \begin{bmatrix} 0\\-y_3\\0\end{bmatrix}$$
$$= y_1\begin{bmatrix} 1\\1\\0\end{bmatrix} + y_2\begin{bmatrix} 1\\0\\0\end{bmatrix} + y_3\begin{bmatrix} 0\\-1\\0\end{bmatrix}$$
Then Image of $T = \text{Span}\left\{\begin{bmatrix} 1\\1\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\-1\\0\end{bmatrix}\right\}$
$$Clearly \left\{\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\-1\\0\end{bmatrix}\right\} \text{ is a linearly independent set and } \begin{bmatrix} 1\\1\\0\\0\end{bmatrix} = \begin{bmatrix} 1\\0\\0\\0\end{bmatrix} - \begin{bmatrix} 0\\-1\\0\\0\end{bmatrix}.$$
Therefore, the basis for image of $T = \left\{\begin{bmatrix} 1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\-1\\0\\0\end{bmatrix}\right\}.$

(b) What is the Rank of the matrix defining the linear transformation T? Explain your answer.

Soln: The matrix representing T is $A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$. This will have Rank 2 since the dimension of Image T = Rank of the matrix A. • Let $W = \{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a + b + c = 0 \}$ (that is, the set of all vectors $\begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3$ satisfying the equation a + b + c = 0). (a) Show that W is a subspace of \mathbb{R}^3 .

Soln: The subspace W is the set of solutions to the matrix equation

$$\begin{bmatrix} 111 \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \end{bmatrix}$$

Then we have one equation in three unknowns. We have infinitely many choices for b and c. Further

$$a = -b - c.$$

Therefore, vectors in W are of the form

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} -b - c \\ b \\ c \end{bmatrix}$$
$$= \begin{bmatrix} -b \\ b \\ 0 \end{bmatrix} + \begin{bmatrix} -c \\ 0 \\ c \end{bmatrix}$$
$$= b \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$
Therefore, $W = \text{Span} \{ \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \}$ Alternatively,
$$* \text{ We see that } \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \in W \text{ since } 0 + 0 + 0 = 0.$$

* For any two vectors
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
 and $\begin{bmatrix} e \\ f \\ g \end{bmatrix}$ in W . We know that $a + b + c = 0$ and $e + f + g = 0$. Then $\begin{bmatrix} a \\ b \\ c \end{bmatrix} + \begin{bmatrix} e \\ f \\ g \end{bmatrix} = \begin{bmatrix} a + e \\ b + f \\ c + g \end{bmatrix}$. But $a + b + c + e + f + g = 0 + 0 = 0$.
* For any $k \in \mathbb{R}$ and $\begin{bmatrix} a \\ b \\ c \end{bmatrix} \in W$ we have that $a + b + c = 0$. Then $k(a + b + c) = ka + kb + kc = 0 \implies \begin{bmatrix} ka \\ kb \\ kc \end{bmatrix} \in W$ for all $k \in \mathbb{R}$.

Then W is a subspace.

- (b) Find a basis of W. Soln: Clearly, no scalar multiple of $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$ can be equal to $\begin{bmatrix} -1\\0\\1 \end{bmatrix}$. The basis of W is $\left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$ since they span the set and are linearly independent. $\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$
- Let { 1 1 1 , 0 1 1 , 0 1 1 , 0 1 1 , 0] } be a basis of a subspace W of IR⁴.
 (a) Find an orthogonal basis { u
 ₁, u
 ₂ } of W. Show work.

Ans. Use Gram Schmidt to obtain an orthogonal basis
$$\left\{ \begin{bmatrix} 1/2\\ 1/2\\ 1/2\\ 1/2 \end{bmatrix}, \begin{bmatrix} -1/2\\ 1/2\\ 1/2\\ -1/2 \end{bmatrix} \right\}$$

(b) Let
$$D = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $Q = [\vec{u}_1 \vec{u}_2]$. Find an upper triangular 2×2 matrix R so that $D = QR$. Show work.

- Ans. Write down column vectors in D in terms of \vec{u}_1 and \vec{u}_2 to get that $R = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$.
- Let \mathbb{C} be the set of all complex numbers, that is, $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}.$ Let $T: \mathbb{C} \to \mathbb{C}$ be the linear transformation defined as T(a+bi) = -b+ai
 - (a) Find the matrix B of the transformation T with respect to the basis $\mathcal{B} = \{1 + i, 1 - i\}$. Show work.

Ans. Evaluate T at the basis elements and write in \mathcal{B} -coordinates.

$$B = \left[\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right]$$

- (b) Find the matrix A of the transformation T with respect to the basis $\mathcal{B}' = \{1, i\}$. Show work.
- Ans. Repeat the same procedure with \mathcal{B}' coordinates.
 - (c) Find a matrix S such that $A = SBS^{-1}$. Show work.
- Ans. Note if you find the change of basis matrix S from \mathcal{B} -coordinates to \mathcal{B}' coordinates, then it has the correct property.
- What is the dimension of the vector space of all 1×3 matrices $\mathcal{M}_{1\times 3}$? Explain your answer.

Ans. Dimension is 3. Write down a basis to explain your answer.

• Let \mathcal{D} denote the space of differentiable functions from $\mathbb{R} \to \mathbb{R}$. Is the function $\langle , \rangle : \mathcal{D} \times \mathcal{D} \to I\!\!R$ defined as

$$\langle f,g \rangle = f(0)g'(0) + f'(0)g(0)$$

an inner product on \mathcal{D} ?

Ans. False. What happens when f(x) = x - 1 and you take its inner product with itself?

• Let
$$V = \text{Span}\left\{ \begin{bmatrix} -1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\3\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\-2 \end{bmatrix} \right\}$$
. Find the dimension of V. Explain your answer

plain your answer.

Ans. Write down the matrix with vectors in $\left\{ \begin{bmatrix} -1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\3\\1 \end{bmatrix}, \begin{bmatrix} 0\\-1\\-2 \end{bmatrix} \right\}$ as the column vectors. Use the pivot elements to pick out which vectors are linearly independent.

- Let $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$.
 - (a) Find the eigenvalues of A.

Ans. Eigenvalues are 2 and 0.

(b) Find the eigenspaces corresponding to eigenvalues of A.

Ans. Eigenspace for 2 is Span{{ $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ }. Eigenspace for eigenvalue 0 is Span{ $\begin{bmatrix} -1\\1\\1 \end{bmatrix}$ }.