MATH 110.201

Suggested Review Exercises

Here are some exercises to review before the exam.

- Determine whether or not the following sets span \mathbb{R}^{2}.
(a) $\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}3 \\ 2\end{array}\right]\right\}$.
(b) $\left\{\left[\begin{array}{c}-2 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right]\right\}$
- Give short answers to the following.
(a) Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ span a vector space V and $v_{3} \in \operatorname{Span}\left\{v_{1}, v_{2}\right\}$. Show that $\operatorname{Span}\left\{v_{1}, v_{2}\right\}=V$.
(b) If $A x=0$ for all $x \in \mathbb{R}^{3}$. Find $\operatorname{Ker}(A)$.
(c) If A is a 4×6 matrix with $\operatorname{dim} \operatorname{Ker}(A)=2$. How many pivots does A have? Why?
- Let V be a vector space of dimension 4 and W be a subspace of V.
(a) What are the minimum and maximum dimensions W can have? Why?
(b) Let $\left\{w_{1}, w_{2}, w_{3}\right\}$ span W and $w_{4} \in V$ be such that $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ is linearly independent. What is the dimension of W ? State the properties of linearly independent sets you are using.
- Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined as

$$
T\left(\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
y_{1}+y_{2} \\
y_{1}-y_{2} \\
y_{3}
\end{array}\right]
$$

(a) Find the Kernel of T.
(b) Is T invertible? Explain why or why not?

- Is $W=\left\{\left[\begin{array}{c}a-b \\ b \\ 0\end{array}\right]: a, b \in \mathbb{R}\right\}$ a subspace of \mathbb{R}^{3} (This is the set of vectors in \mathbb{R}^{4} of the form $\left[\begin{array}{c}a-b \\ b \\ 0\end{array}\right]$ for all possible real values of a and b)?
(a) Show that W is a subspace of \mathbb{R}^{3}.
(b) Find a basis for W.
- State whether the following statements are true or false. If true, explain your answer. If false, give an example for which the statement is false.
(a) Let W be a subspace of \mathbb{R}^{4}. If $W=\operatorname{Span}\left\{\vec{w}_{1}, \cdots, \vec{w}_{k}\right\}$ for vectors $\vec{w}_{1}, \cdots, \vec{w}_{k}$ in \mathbb{R}^{4} and the dimension of W is 3 then $k=3$.
(b) If A is a orthogonal 3×3 matrix then $\operatorname{det} A>0$.
- Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined as

$$
T\left(\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]\right)=\left[\begin{array}{c}
y_{1}+y_{2} \\
y_{1}-y_{3} \\
0
\end{array}\right]
$$

(a) Find a basis of the Image of T.
(b) What is the Rank of the matrix defining the linear transformation T ? Explain your answer.

- Let $W=\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a+b+c=0\right\}$ (that is, the set of all vectors $\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \in \mathbb{R}^{3}$ satisfying the equation $\left.a+b+c=0\right)$.
(a) Show that W is a subspace of \mathbb{R}^{3}.
(b) Find a basis of W.
- Let $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$ be a basis of a subspace W of \mathbb{R}^{4}.
(a) Find an orthogonal basis $\left\{\vec{u}_{1}, \vec{u}_{2}\right\}$ of W. Show work.
(b) Let $D=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right]$ and $Q=\left[\vec{u}_{1} \vec{u}_{2}\right]$. Find an upper triangular 2×2 matrix R so that $D=Q R$. Show work.
- Let \mathbb{C} be the set of all complex numbers, that is, $\mathbb{C}=\{a+b i: a, b \in \mathbb{R}\}$.

Let $T: \mathbb{C} \rightarrow \mathbb{C}$ be the linear transformation defined as $T(a+b i)=-b+a i$
(a) Find the matrix B of the transformation T with respect to the basis $\{1+i, 1-i\}$. Show work.
(b) Find the matrix A of the transformation T with respect to the basis $\{1, i\}$. Show work.
(c) Find a matrix S such that $A=S B S^{-1}$. Show work.

- What is the dimension of the vector space of all 1×3 matrices $\mathcal{M}_{1 \times 3}$? Explain your answer.
- Let \mathcal{D} denote the space of differentiable functions from $\mathbb{R} \rightarrow \mathbb{R}$. Is the function $<,>: \mathcal{D} \times \mathcal{D} \rightarrow \mathbb{R}$ defined as

$$
<f, g>=f(0) g^{\prime}(0)+f^{\prime}(0) g(0)
$$

an inner product on \mathcal{D} ?

- Let $V=\operatorname{Span}\left\{\left[\begin{array}{r}-1 \\ 1 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{r}0 \\ -1 \\ -2\end{array}\right]\right\}$. Find the dimension of V. Explain your answer.
- Let $A=\left[\begin{array}{rrr}1 & 2 & -1 \\ 1 & 0 & 1 \\ 1 & 0 & 1\end{array}\right]$.
(a) Find the eigenvalues of A.
(b) Find the eigenspaces corresponding to eigenvalues of A.

