November 8, 2009

MATH 110.201 Suggested Review Exercises

Here are some exercises to review before the exam.

- Determine whether or not the following sets span \mathbb{R}^2 .
 - (a) $\left\{ \begin{bmatrix} 2\\1 \end{bmatrix}, \begin{bmatrix} 3\\2 \end{bmatrix} \right\}$. (b) $\left\{ \begin{bmatrix} -2\\1 \end{bmatrix}, \begin{bmatrix} 1\\3 \end{bmatrix}, \begin{bmatrix} 2\\4 \end{bmatrix} \right\}$
- Give short answers to the following.
 - (a) Let $\{v_1, v_2, v_3\}$ span a vector space V and $v_3 \in \text{Span}\{v_1, v_2\}$. Show that $\text{Span}\{v_1, v_2\} = V$.
 - (b) If Ax = 0 for all $x \in \mathbb{R}^3$. Find Ker(A).
 - (c) If A is a 4×6 matrix with $\dim \text{Ker}(A) = 2$. How many pivots does A have ? Why?
- Let V be a vector space of dimension 4 and W be a subspace of V.
 - (a) What are the minimum and maximum dimensions W can have? Why?
 - (b) Let $\{w_1, w_2, w_3\}$ span W and $w_4 \in V$ be such that $\{w_1, w_2, w_3, w_4\}$ is linearly independent. What is the dimension of W? State the properties of linearly independent sets you are using.
- Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined as

$$T\left(\left[\begin{array}{c}y_1\\y_2\\y_3\end{array}\right]\right) = \left[\begin{array}{c}y_1+y_2\\y_1-y_2\\y_3\end{array}\right]$$

- (a) Find the Kernel of T.
- (b) Is T invertible? Explain why or why not?

• Is
$$W = \left\{ \begin{bmatrix} a-b\\b\\0 \end{bmatrix} : a, b \in \mathbb{R} \right\}$$
 a subspace of \mathbb{R}^3 (This is the set of vectors
in \mathbb{R}^4 of the form $\begin{bmatrix} a-b\\b\\0 \end{bmatrix}$ for all possible real values of a and b)?

- (a) Show that W is a subspace of \mathbb{R}^3 .
- (b) Find a basis for W.
- State whether the following statements are true or false. If true, explain your answer. If false, give an example for which the statement is false.
 - (a) Let W be a subspace of \mathbb{R}^4 . If $W = \text{Span}\{\vec{w}_1, \cdots, \vec{w}_k\}$ for vectors $\vec{w}_1, \cdots, \vec{w}_k$ in \mathbb{R}^4 and the dimension of W is 3 then k = 3.
 - (b) If A is a orthogonal 3×3 matrix then det A > 0.
- Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined as

$$T\begin{pmatrix} y_1\\ y_2\\ y_3 \end{bmatrix} = \begin{bmatrix} y_1 + y_2\\ y_1 - y_3\\ 0 \end{bmatrix}$$

- (a) Find a basis of the Image of T.
- (b) What is the Rank of the matrix defining the linear transformation T? Explain your answer.
- Let $W = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a+b+c = 0 \right\}$ (that is, the set of all vectors $\begin{bmatrix} a \\ b \\ c \end{bmatrix} \in \mathbb{R}^3$ satisfying the equation a+b+c=0).

 - (a) Show that W is a subspace of
 - (b) Find a basis of W.
- Let $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix} \right\}$ be a basis of a subspace W of \mathbb{R}^4 .
 - (a) Find an orthogonal basis $\{\vec{u}_1, \vec{u}_2\}$ of W. Show work.

(b) Let
$$D = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$$
 and $Q = [\vec{u}_1 \vec{u}_2]$. Find an upper triangular 2×2

matrix R so that D = QR. Show work.

- Let \mathbb{C} be the set of all complex numbers, that is, $\mathbb{C} = \{a + bi : a, b \in \mathbb{R}\}.$ Let $T: \mathbb{C} \to \mathbb{C}$ be the linear transformation defined as T(a+bi) = -b+ai
 - (a) Find the matrix B of the transformation T with respect to the basis $\{1+i, 1-i\}$. Show work.
 - (b) Find the matrix A of the transformation T with respect to the basis $\{1, i\}$. Show work.
 - (c) Find a matrix S such that $A = SBS^{-1}$. Show work.
- What is the dimension of the vector space of all 1×3 matrices $\mathcal{M}_{1 \times 3}$? Explain your answer.

• Let \mathcal{D} denote the space of differentiable functions from $\mathbb{I}\!\!R \to \mathbb{I}\!\!R$. Is the function $\langle , \rangle : \mathcal{D} \times \mathcal{D} \to I\!\!R$ defined as

$$\langle f,g \rangle = f(0)g'(0) + f'(0)g(0)$$

an inner product on \mathcal{D} ?

- Let $V = \text{Span}\left\{ \begin{bmatrix} -1\\ 1\\ -1 \end{bmatrix}, \begin{bmatrix} 0\\ 3\\ 1 \end{bmatrix}, \begin{bmatrix} 0\\ -1\\ -2 \end{bmatrix} \right\}$. Find the dimension of V. Explain your answer.
- Let $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix}$.
 - (a) Find the eigenvalues of A.
 - (b) Find the eigenspaces corresponding to eigenvalues of A.