SOLUTION KEY TO THE LINEAR ALGEBRA MAKE-UP FINAL EXAM

(1) We find a least squares solution to

$$
A \vec{x}=\vec{y} \quad \text { or } \quad\left[\begin{array}{ccc}
1 & \sin 0 & \cos 0 \\
1 & \sin \pi / 2 & \cos \pi / 2 \\
1 & \sin \pi & \cos \pi \\
1 & \sin 3 \pi / 2 & \cos 3 \pi / 2 \\
1 & \sin 2 \pi & \cos 2 \pi
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
7 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

The normal equation is

$$
A^{T} A \vec{x}_{*}=A^{T} \vec{y}=\vec{y}_{*} \quad \text { or } \quad\left[\begin{array}{lll}
5 & 0 & 1 \\
0 & 2 & 0 \\
1 & 0 & 3
\end{array}\right]\left[\begin{array}{c}
a_{*} \\
b_{*} \\
c_{*}
\end{array}\right]=\left[\begin{array}{l}
7 \\
0 \\
7
\end{array}\right] .
$$

The least-squares solution is

$$
\vec{x}_{*}=\left[\begin{array}{l}
a_{*} \\
b_{*} \\
c_{*}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

so the sought-after trigonometric polynomial is $p(t)=1+2 \cos t$.
(2) (a) The hyperbola is $q(\vec{x})=1$ where $q(\vec{x})=\vec{x}^{T} A \vec{x}$ and

$$
A=\frac{1}{8}\left[\begin{array}{cc}
7 & -3 \\
-3 & -1
\end{array}\right]
$$

We have $p_{A}(\lambda)=\lambda^{2}-(3 / 4) \lambda-1 / 4=(\lambda-1)(\lambda+1 / 4)$ so the eigenvalues of A are $\lambda_{1}=+1, \lambda_{2}=-1 / 4$. The principal axes are
c_{1} axis: $E_{+1}=\operatorname{Ker}(1 I-A)=\operatorname{span} \vec{u}_{1}, \quad \vec{u}_{1}=\frac{1}{\sqrt{10}}\left[\begin{array}{c}3 \\ -1\end{array}\right]$ c_{2} axis: $E_{-1 / 4}=\operatorname{Ker}\left(-\frac{1}{4} I-A\right)=\operatorname{span} \vec{u}_{2}, \quad \vec{u}_{2}=\frac{1}{\sqrt{10}}\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
(b) In $c_{1}-c_{2}$ coordinates: $q(\vec{x})=\lambda_{1} c_{1}^{2}+\lambda_{2} c_{2}^{2}$ so the equation of the hyperbola becomes

$$
c_{1}^{2}-\frac{1}{4} c_{2}^{2}=1 .
$$

Date: 9 May 2002.
(c) Eduardo Dueñez 2002.

Figure 1. The hyperbola $7 x_{1}^{2}-6 x_{1} x_{2}-x_{2}^{2}=8$ with its principal axes and the vectors \vec{u}_{1} (black) and $2 \vec{u}_{2}$ (blue).
(c) The asymptote are spanned by the vectors $\vec{d}_{ \pm}=\left|\lambda_{1}\right|^{-1 / 2} u_{1} \pm$ $\left|\lambda_{2}\right|^{-1 / 2} u_{2}$, namely
$\vec{d}_{+}=\vec{u}_{1}+2 \vec{u}_{2}=\sqrt{\frac{5}{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right] \quad$ and $\quad \vec{d}_{-}=\vec{u}_{1}-2 \vec{u}_{2}=\sqrt{\frac{1}{10}}\left[\begin{array}{c}1 \\ -7\end{array}\right]$.
(a) $p_{A}(\lambda)=\operatorname{det}(\lambda I-A)=\lambda^{3}-2 \lambda^{2}-2 \lambda=\lambda\left(\lambda^{2}-2 \lambda-2\right)$. The roots of the quadratic factor are the complex numbers $1 \pm i$ so the eigenvalues are $\lambda_{1}=0, \lambda_{2}=1+i, \lambda_{3}=1-i$.
(b)

$$
\begin{gather*}
E_{0}=\operatorname{Ker}(0 I-A)=\operatorname{span}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \tag{1}\\
E_{1 \pm i}=\operatorname{Ker}((1 \pm i) I-A)=\operatorname{span}\left[\begin{array}{c}
0 \\
1 \\
\pm i
\end{array}\right]
\end{gather*}
$$

so

$$
S=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & i & -i
\end{array}\right], \quad D=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1+i & 0 \\
0 & 0 & 1-i
\end{array}\right]
$$

and $S^{-1} A S=D$ is the desired diagonalization of A.
(4) (a) Direct calculation shows $L\left(E_{11}\right)=E_{11}, L\left(E_{22}\right)=E_{22}$, $L\left(E_{12}\right)=L\left(E_{12}\right)=\left(E_{12}+E_{21}\right) / 2$, so

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 / 2 & 1 / 2 & 0 \\
0 & 1 / 2 & 1 / 2 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

(b) Since

$$
\operatorname{rref}(M)=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

has pivots in the first, second and fourth columns it follows that $\operatorname{Im}(M)$ has as basis the corresponding columns of M, so we may take $\mathfrak{B}=\left\{E_{11},\left(E_{12}+E_{21}\right) / 2, E_{22}\right\}$. In fact, changing this basis just a bit we obtain an orthonormal basis $\left\{E_{11},\left(E_{12}+E_{21}\right) / \sqrt{2}, E_{22}\right\}$.
(c) Since L is an orthogonal projection, $\mathcal{S}^{\perp}=\operatorname{Ker}(L)$, so we start by finding a basis for $\operatorname{Ker}(M)$. From $\operatorname{rref}(M)$ it is easy to read off the basis consisting of the single vector $[0,-1,1,0]$, hence $\operatorname{Ker} L$ has a basis consisting of the ma$\operatorname{trix} N=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Since $\|N\|^{2}=\operatorname{Trace}\left(N^{T} N\right)=2$, the desired orthonormal basis is

$$
\mathfrak{U}=\{U\}, \quad U=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] .
$$

(d)

$$
\begin{aligned}
P(A) & =\langle N, A\rangle N=\frac{1}{2} \operatorname{Trace}\left(N^{T} A\right) N=\frac{1}{2}\left[\begin{array}{cc}
0 & a_{12}-a_{21} \\
a_{21}-a_{12} & 0
\end{array}\right] \\
& =\frac{1}{2}\left(A-A^{T}\right) .
\end{aligned}
$$

Another, more direct, way of deducing this is as follows. It is geometrically obvious that $A=\operatorname{proj}_{\mathcal{S}} A+\operatorname{proj}_{\mathcal{S}^{\perp}} A$ for any matrix $A \in \mathbb{R}^{2 \times 2}$ and subspace $\mathcal{S} \subset \mathbb{R}^{2 \times 2}$ (think of adding the projections of a vector onto two mutually orthogonal lines in \mathbb{R}^{2}), which in our case can be read to say $L(A)+P(A)=A$, so $P(A)=A-(1 / 2)\left(A+A^{T}\right)=$ $(1 / 2)\left(A-A^{T}\right)$.
(5) (a) False. $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is a counterexample.
(b) False. $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is a counterexample.
(c) False. $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ are symmetric, yet $A B=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is not.
(d) True. If A is diagonalizable, it is similar to a diagonal matrix, hence a fortiori to a symmetric matrix.
(e) True. Since $A^{2}=0$ then $A(A \vec{x})=\overrightarrow{0}$, so any vector $A \vec{x} \in$ $\operatorname{Im}(A)$ is in $\operatorname{Ker}(A)$, therefore $\operatorname{Im}(A) \subset \operatorname{Ker}(A)$. Hence, $\operatorname{dim}(\operatorname{Im}(A)) \leq \operatorname{dim}(\operatorname{Ker}(A))$ so the rank r and the nullity n of A satisfy $r \leq n$. Since $r+n=10$ by the rank-nullity theorem, $r \leq 5$.
(f) True. By the fundamental theorem of linear algebra, $\operatorname{Ker}(A)$ and $\operatorname{Im}\left(A^{T}\right)$ are mutually orthogonally complementary subspaces. Since $A=A^{T}, \operatorname{Im}\left(A^{T}\right)=\operatorname{Im}(A)$ and any two vectors $\vec{x} \in \operatorname{Ker}(A)$ and $\vec{y} \in \operatorname{Im}(A)$ must be orthogonal.
(g) False. $S^{T} A S=D$ for some orthogonal S and diagonal D. Squaring the equation and recalling that S and S^{T} are the inverses of one another we obtain

$$
D^{2}=\left(S^{T} A S\right)^{2}=S^{T} A S S^{T} A S=S^{T} A I A S=S^{T} A^{2} S=S^{T} 0 S=0
$$

since $A^{2}=0$. By looking at the diagonal of D we conclude that $\lambda^{2}=0$ for any eigenvalue λ of A, hence D itself is the zero matrix. Therefore $A=S D S^{T}=S 0 S^{T}=0$.

