1. (15 points) Find the trigonometric polynomial $p(t)=a+b \sin t+c \cos t$ of degree 1 which best fits the data:

t	$y(t)$
0	7
$\pi / 2$	0
π	0
$3 \pi / 2$	0
2π	0

2. (15 points) For the hyperbola

$$
7 x_{1}^{2}-6 x_{1} x_{2}-x_{2}^{2}=8
$$

find:
(a) the principal axes,
(b) the equation of the hyperbola in the coordinate system given by the principal axes, and
(c) the asymptotes. [Hint. The asymptotes of a hyperbola $q(\vec{x})=1$ are the diagonals of the rectangle whose vertices are

$$
\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{ \pm 1}{\sqrt{\left|\lambda_{1}\right|}} \\
\frac{ \pm 1}{\sqrt{\left|\lambda_{2}\right|}}
\end{array}\right]
$$

in $c_{1}-c_{2}$ coordinates (principal axes coordinates).]
(This page intentionally left blank.)
3. (15 points) Consider the matrix

$$
A=\left[\begin{array}{ccc}
0 & 0 & 0 \\
-2 & 1 & 1 \\
0 & -1 & 1
\end{array}\right]
$$

(a) Find all the (real or complex) eigenvalues of A.
(b) Diagonalize the matrix A (over the complex numbers, if necessary).
4. (20 points) Consider the space $\mathbb{R}^{2 \times 2}$ of 2×2 matrices. Recall that the standard basis of $\mathbb{R}^{2 \times 2}$ is given by $\mathfrak{E}=\left\{E_{11}, E_{12}, E_{21}, E_{22}\right\}$.
Consider also the linear transformation $L: \mathbb{R}^{2 \times 2} \rightarrow \mathbb{R}^{2 \times 2}$ given by

$$
L(A)=\frac{1}{2}\left(A+A^{T}\right)
$$

(a) Find the matrix $M=[L]_{\mathfrak{E}}$ (M is symmetric!).
(b) Assume as a fact that the linear transformation L is the orthogonal projection ${ }^{1}$ onto some subspace $\mathcal{S} \subset \mathbb{R}^{2 \times 2}$. Find a basis \mathfrak{B} for \mathcal{S}. [Hint. L must be the orthogonal projection onto its own image, so start by finding a basis for $\operatorname{Im}(M)$.]
(c) Find an orthonormal basis \mathfrak{U} for \mathcal{S}^{\perp} (the orthogonal complement of the subspace \mathcal{S} with respect to the inner product in $\mathbb{R}^{2 \times 2}$). [Hint. Since L is an orthogonal projection, $\mathcal{S}^{\perp}=\operatorname{Ker}(L)$, so start by finding a basis for $\operatorname{Ker}(M)$.]
(d) Write down a formula for the orthogonal projection $P: \mathbb{R}^{2 \times 2} \rightarrow$ $\mathbb{R}^{2 \times 2}$ onto \mathcal{S}^{\perp}. [Hint. The orthonormal basis \mathfrak{U} of (c) might help.]

[^0](This page intentionally left blank)
5. TRUE OR FALSE. (5 points each) Justify your answers!
(a) If all the (real or complex) eigenvalues of A are zero, then A is the zero matrix.
(b) If A is a (square) skew-symmetric matrix, then $\operatorname{det}(A)=0$.
(c) If A, B are symmetric matrices, so is their product $A B$.
(d) If $A_{n \times n}$ is diagonalizable (over the real numbers) then A is similar to a symmetric matrix.
(e) If $A^{2}=0$ for a 10×10 matrix A, then the inequality $\operatorname{rank}(A) \leq 5$ must hold. [Hint. Justify the following first: for such an A we have $\operatorname{Im}(A) \subset \operatorname{Ker}(A)$. After that, the rank-nullity theorem may help.]
(f) If A is a symmetric matrix and $\vec{x} \in \operatorname{Ker}(A), \vec{y} \in \operatorname{Im}(A)$ then $\vec{x} \perp \vec{y}$. [Hint. Use the fundamental theorem of linear algebra, or else do a direct calculation.]
(g) There is a symmetric matrix A such that $A \neq 0$ and $A^{2}=0$. [Hint. How does A being symmetric help?]

[^0]: ${ }^{1}$ With respect to the inner product $\langle A, B\rangle=\operatorname{Trace}\left(A^{T} B\right)$ in $\mathbb{R}^{2 \times 2}$.

