1. (15 points) Find the trigonometric polynomial $p(t) = a + b \sin t + c \cos t$ of degree 1 which best fits the data:

t		y(t)
0		7
$\pi/$	2	0
π		0
3π	/2	0
27	τ	0

2. (15 points) For the hyperbola

$$7x_1^2 - 6x_1x_2 - x_2^2 = 8$$

find:

- (a) the principal axes,
- (b) the equation of the hyperbola in the coordinate system given by the principal axes, and
- (c) the asymptotes. [*Hint.* The asymptotes of a hyperbola $q(\vec{x}) = 1$ are the diagonals of the rectangle whose vertices are

$$\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} \frac{\pm 1}{\sqrt{|\lambda_1|}} \\ \frac{\pm 1}{\sqrt{|\lambda_2|}} \end{bmatrix}$$

in c_1 - c_2 coordinates (principal axes coordinates).]

(This page intentionally left blank.)

3. (15 points) Consider the matrix

$$A = \begin{bmatrix} 0 & 0 & 0 \\ -2 & 1 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$

- (a) Find all the (real or complex) eigenvalues of A.
- (b) Diagonalize the matrix A (over the complex numbers, if necessary).

4. (20 points) Consider the space $\mathbb{R}^{2\times 2}$ of 2×2 matrices. Recall that the standard basis of $\mathbb{R}^{2\times 2}$ is given by $\mathfrak{E} = \{E_{11}, E_{12}, E_{21}, E_{22}\}.$

Consider also the linear transformation $L: \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ given by

$$L(A) = \frac{1}{2}(A + A^T)$$

- (a) Find the matrix $M = [L]_{\mathfrak{E}}$ (M is symmetric!).
- (b) Assume as a fact that the linear transformation L is the orthogonal projection¹ onto some subspace $S \subset \mathbb{R}^{2 \times 2}$. Find a basis \mathfrak{B} for S. [*Hint.* L must be the orthogonal projection onto its own image, so start by finding a basis for $\operatorname{Im}(M)$.]
- (c) Find an *orthonormal* basis \mathfrak{U} for \mathcal{S}^{\perp} (the orthogonal complement of the subspace \mathcal{S} with respect to the inner product in $\mathbb{R}^{2\times 2}$). [*Hint.* Since L is an orthogonal projection, $\mathcal{S}^{\perp} = \operatorname{Ker}(L)$, so start by finding a basis for $\operatorname{Ker}(M)$.]
- (d) Write down a formula for the orthogonal projection $P : \mathbb{R}^{2 \times 2} \to \mathbb{R}^{2 \times 2}$ onto S^{\perp} . [*Hint.* The orthonormal basis \mathfrak{U} of (c) might help.]

¹With respect to the inner product $\langle A, B \rangle = \text{Trace}(A^T B)$ in $\mathbb{R}^{2 \times 2}$.

(This page intentionally left blank)

5. TRUE OR FALSE. (5 points each) Justify your answers!

(a) If all the (real or complex) eigenvalues of A are zero, then A is the zero matrix.

(b) If A is a (square) skew-symmetric matrix, then det(A) = 0.

(c) If A, B are symmetric matrices, so is their product AB.

(d) If $A_{n \times n}$ is diagonalizable (over the real numbers) then A is similar to a symmetric matrix.

(e) If $A^2 = 0$ for a 10×10 matrix A, then the inequality rank $(A) \leq 5$ must hold. [*Hint.* Justify the following first: for such an A we have $\text{Im}(A) \subset \text{Ker}(A)$. After that, the rank-nullity theorem may help.]

(f) If A is a symmetric matrix and $\vec{x} \in \text{Ker}(A), \vec{y} \in \text{Im}(A)$ then $\vec{x} \perp \vec{y}$. [*Hint.* Use the fundamental theorem of linear algebra, or else do a direct calculation.] (g) There is a symmetric matrix A such that $A \neq 0$ and $A^2 = 0$. [*Hint.* How does A being symmetric help?]