Mathematics 110.201: Linear Algebra. Spring 2002

Midterm exam. 8 April 2002.

Name			
ТА	or	Section	
Please SIGN the following statement: "I am a student enrolled in the course and the name above is my true full name."			

Your exam will not be graded unless you EITHER sign the above statement OR positively identify yourself to the proctor.

Instructions: No notes or calculator may be used. *Please explain the procedure followed to reach your answers.* The proctor is qualified to answer questions about the statement of the problems *only*.

Time: 50 minutes.

Question 1	
(20 points)	
Question 2	
(20 points)	
Question 3	
(20 points)	
Question 4	
(20 points)	
Question 5	
(20 points)	
TOTAL	

1. Find the QR factorization of the matrix $% \left({{{\mathbf{R}}_{{\mathbf{r}}}}_{{\mathbf{r}}}} \right)$

$$\begin{bmatrix} 4 & 25 \\ 0 & 0 \\ 3 & -25 \end{bmatrix}.$$

2. For the linear system $A\vec{x} = \vec{b}$ with

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad \vec{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 3 \end{bmatrix}$$

find:

- (a) the normal equation,
- (b) the least squares solution (or solutions) of the system,
- (c) the projection \vec{b}_* of \vec{b} onto Im(A), and
- (d) the matrix B of the projection from \mathbb{R}^4 onto Im(A). (*Help:* after you find B check that it is a symmetric matrix. It should.)

(This page intentionally left blank)

3. Consider the parallelogram \mathcal{P} in \mathbb{R}^3 defined by the vectors

$$\vec{u} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 1\\-2\\1 \end{bmatrix}$.

Compute the area of \mathcal{P} in TWO different ways. (We have studied at least three different ways of finding the area!) [*Help:* Observe that $\vec{u} \cdot \vec{v} = 0$.)

(This page intentionally left blank)

4. Is the following statement true or false? Justify your answer.

"The rule

$$\vec{v}, \vec{w} \rangle = \| \vec{v} \times \vec{w} \| \tag{1}$$

 $\langle \vec{v}, \vec{w} \rangle = \| \vec{v} \times \vec{w} \|$ (1) defines an inner product in \mathbb{R}^3 (though possibly different from the standard dot product in \mathbb{R}^3)."

(In equation (1), $\|\vec{v} \times \vec{w}\|$ denotes the usual length of the vector $\vec{v} \times \vec{w}$.)

5. Recall that $C[-\pi,\pi]$ is an inner product space with

$$\langle f,g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)g(t)dt.$$

The space P_1 of linear polynomials (actual polynomials, not trigonometric polynomials) is a subspace of $C[-\pi,\pi]$. Find the projection of the sine function $\sin(t)$ onto the subspace P_1 by following the steps below.

- (a) Apply the Gram-Schmidt process to the basis $\mathfrak{B} = \{1, t\}$ of P_1 in order to obtain an orthonormal basis \mathfrak{U} of P_1 .
- (b) Use the orthonormal basis \mathfrak{U} to compute the desired projection (this projection is the linear polynomial that best approximates the sine function in the least-squares sense.) Help: $\int_{-\pi}^{\pi} t \sin t \, dt = 2\pi$.

(This page intentionally left blank)