1. For which choice(s) of the constant k is the following matrix invertible?

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & k \\
1 & 4 & k^{2}
\end{array}\right] .
$$

2. Find bases of (i) the image, and (ii) the kernel of the matrix

$$
A=\left[\begin{array}{lll}
1 & 3 & 2 \\
1 & 2 & 3 \\
1 & 1 & 4
\end{array}\right]
$$

3. (a) Write down the properties defining a linear subspace $V \subset \mathbf{R}^{n}$.
(b) Consider the subset $W \subset \mathbf{R}^{3}$ consisting of those vectors \vec{w} such that $\|\vec{w}\|=1$. Justify whether or not W is a linear subspace of \mathbf{R}^{3} and, if so, find a basis for it.
4. Consider the linear transformation $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ with matrix

$$
A=\frac{1}{5}\left[\begin{array}{cc}
9 & -8 \\
2 & 1
\end{array}\right] .
$$

Find the matrix B of T with respect to the basis \mathfrak{B} of \mathbf{R}^{2} consisting of the vectors $\vec{v}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$. (Note: B is a much simpler matrix than A. Do you recognize it as the matrix of a shear? T is a shear along \vec{v}_{1}.)
5. (a) Find the matrix A of the reflection T_{1} along the diagonal $x_{1}=x_{2}$ in \mathbf{R}^{2}. (Hint: Find the columns of A by applying T_{1} to the standard basis vectors \vec{e}_{1}, \vec{e}_{2}.)
(b) Find the matrix B of the rotation T_{2} around the origin of \mathbf{R}^{2} by an angle of $-\pi / 2$ (a quarter-revolution clockwise).
(c) What transformation is the composition $T_{2} \circ T_{1}$? Find its matrix.
(This page intentionally left blank)

