Inverting 2×2 matrices

In this note we invert the general 2×2 matrix as in Theorem 1.4.5 of AntonRorres. However, we apply only the standard inversion method, with no guesswork or ingenuity needed.

THEOREM 1 The 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is invertible if and only if $\Delta \neq 0$, where we write $\Delta=a d-b c$. When $\Delta \neq 0$, the inverse is

$$
A^{-1}=\frac{1}{\Delta}\left[\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right]
$$

Proof We row reduce the 2×4 partitioned matrix

$$
[A \mid I]=\left[\begin{array}{ll|ll}
a & b & 1 & 0 \tag{2}\\
c & d & 0 & 1
\end{array}\right]
$$

to obtain the reduced row echelon matrix $\left[I \mid A^{-1}\right]$. There are two cases, depending on whether $a=0$ or not.

Case $a \neq 0 \quad$ We multiply row 1 by $1 / a$ to get

$$
\left[\begin{array}{cc|cc}
1 & b / a & 1 / a & 0 \\
c & d & 0 & 1
\end{array}\right]
$$

Then we subtract c times row 1 from row 2 to obtain

$$
\left[\begin{array}{cc|cc}
1 & b / a & 1 / a & 0 \\
0 & \Delta / a & -c / a & 1
\end{array}\right]
$$

where we write the entry at row 2 , column 2 as $d-b c / a=\Delta / a$. If $\Delta=0$, inversion breaks down at this point, as we will not get a leading 1 in column 2 ; otherwise, we multiply row 2 by a / Δ to get the row echelon form

$$
\left[\begin{array}{cc|cc}
1 & b / a & 1 / a & 0 \\
0 & 1 & -c / \Delta & a / \Delta
\end{array}\right]
$$

Finally, we subtract b / a times row 2 from row 1 to get the desired reduced row echelon matrix, whose right half we read off as A^{-1}, in the required form,

$$
\left[\begin{array}{cc|cc}
1 & 0 & d / \Delta & -b / \Delta \\
0 & 1 & -c / \Delta & a / \Delta
\end{array}\right]
$$

where at row 1, column 3 we write

$$
\frac{1}{a}+\frac{b c}{a \Delta}=\frac{a d-b c+b c}{a \Delta}=\frac{d}{\Delta}
$$

Case $a=0$ We must have $c \neq 0$ for inversion to progress, otherwise we have a column of zeros and will never get a leading 1 in column 1 . First we switch rows 1 and 2 in (2),

$$
\left[\begin{array}{cc|cc}
c & d & 0 & 1 \\
0 & b & 1 & 0
\end{array}\right]
$$

Now we multiply row 1 by $1 / c$ to get the leading 1 in row 1 ,

$$
\left[\begin{array}{cc|cc}
1 & d / c & 0 & 1 / c \\
0 & b & 1 & 0
\end{array}\right]
$$

Again, inversion breaks down here unless $b \neq 0$ because we need a leading 1 in column 2 . We multiply row 2 by $1 / b$ to get the row echelon matrix

$$
\left[\begin{array}{cc|cc}
1 & d / c & 0 & 1 / c \\
0 & 1 & 1 / b & 0
\end{array}\right]
$$

Finally, we subtract d / c times row 2 from row 1 to obtain the reduced row echelon matrix

$$
\left[\begin{array}{cc|cc}
1 & 0 & -d / b c & 1 / c \\
0 & 1 & 1 / b & 0
\end{array}\right]
$$

Because now $\Delta=-b c$, this is what we want. (The condition $\Delta \neq 0$ is exactly what we need to guarantee that $c \neq 0$ and $b \neq 0$.)

Because the expression Δ occurs everywhere, it deserves a name.
Definition 3 The determinant $\operatorname{det}(A)$ of the 2×2 matrix A is the expression

$$
\operatorname{det}(A)=\Delta=a d-b c
$$

The method generalizes in principle to produce a formula for the inverse of a general $n \times n$ matrix, so we know a formula exists. Even for $n=3$, we need a better way to find it.

