Diagonalization

References are to Anton-Rorres, 7th Edition

Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be a linear transformation, where we treat the vectors in \mathbf{R}^{n} as column vectors. By Theorem 4.3.3, there is a unique $n \times n$ matrix A such that T is expressed in terms of A by

$$
\begin{equation*}
\mathbf{y}=T(\mathbf{x})=A \mathbf{x} \tag{1}
\end{equation*}
$$

In the reverse direction, we write $A=[T]_{E}$, the matrix of T with respect to the standard basis $E=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$. Explicitly, A is the matrix

$$
\begin{equation*}
A=\left[T\left(\mathbf{e}_{1}\right)\left|T\left(\mathbf{e}_{2}\right)\right| \ldots \mid T\left(\mathbf{e}_{n}\right)\right] \tag{2}
\end{equation*}
$$

whose j-th column is the image $T\left(\mathbf{e}_{j}\right)$ of \mathbf{e}_{j} under T. Expanding this column, we have

$$
\begin{equation*}
T\left(\mathbf{e}_{j}\right)=a_{1 j} \mathbf{e}_{1}+a_{2 j} \mathbf{e}_{2}+\ldots+a_{n j} \mathbf{e}_{n} \tag{3}
\end{equation*}
$$

Change of basis We wish to simplify the matrix by changing to a different basis $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ of \mathbf{R}^{n}. Any vector $\mathbf{x} \in \mathbf{R}^{n}$ can be expressed uniquely as a linear combination

$$
\begin{equation*}
\mathbf{x}=x_{1}^{\prime} \mathbf{v}_{1}+x_{2}^{\prime} \mathbf{v}_{2}+\ldots+x_{n}^{\prime} \mathbf{v}_{n} \tag{4}
\end{equation*}
$$

for suitable coefficients $x_{i}^{\prime} \in \mathbf{R}$.
Definition 5 The coordinate vector $[\mathbf{x}]_{B}$ of \mathbf{x} with respect to the new basis B is the vector

$$
\mathbf{x}^{\prime}=[\mathbf{x}]_{B}=\left[\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{n}^{\prime}
\end{array}\right]
$$

Definition 6 The matrix $[T]_{B}$ of T with respect to the new basis B is the $n \times n$ matrix D whose entries $d_{i j}$ satisfy the analogue

$$
\begin{equation*}
T\left(\mathbf{v}_{j}\right)=d_{1 j} \mathbf{v}_{1}+d_{2 j} \mathbf{v}_{2}+\ldots+d_{n j} \mathbf{v}_{n} \tag{7}
\end{equation*}
$$

of equation (3) for each j.
Let $\mathbf{y}^{\prime}=[\mathbf{y}]_{B}$ be the new coordinate vector of $\mathbf{y}=T(\mathbf{x})$. Then the analogue of equation (1) is

$$
\begin{equation*}
\mathbf{y}^{\prime}=D \mathbf{x}^{\prime} \tag{8}
\end{equation*}
$$

The transition matrix We need to know how to compute the new matrix D from A, and the new coordinate vector \mathbf{x}^{\prime} from \mathbf{x}; also vice versa. Obviously, we have to use the \mathbf{v} 's in some way, so we encode them in a matrix.

Definition 9 The transition matrix from the basis B to the basis E is the $n \times n$ matrix

$$
P=\left[\mathbf{v}_{1}\left|\mathbf{v}_{2}\right| \ldots \mid \mathbf{v}_{n}\right]
$$

whose j-th column is the vector \mathbf{v}_{j}.

Note the direction; P expresses the new basis B in terms of the old standard basis E, not the other way round. To relate \mathbf{x} and \mathbf{x}^{\prime}, we take the i-th coordinate in equation (4), noting that we have encoded the i-th coordinate of the vector \mathbf{v}_{j} as the entry $p_{i j}$ in P,

$$
\begin{aligned}
x_{i} & =x_{1}^{\prime} p_{i 1}+x_{2}^{\prime} p_{i 2}+\ldots+x_{n}^{\prime} p_{i n} \\
& =p_{i 1} x_{1}^{\prime}+p_{i 2} x_{2}^{\prime}+\ldots+p_{i n} x_{n}^{\prime}
\end{aligned}
$$

which we recognize as the entry in row i of the matrix product $P \mathbf{x}^{\prime}$. Thus

$$
\begin{equation*}
\mathbf{x}=P \mathbf{x}^{\prime} \tag{10}
\end{equation*}
$$

We also need to express \mathbf{x}^{\prime} in terms of \mathbf{x}. This is now easy to do. We note that because B is a basis, the columns of P are linearly independent, the column rank of P is n and P is therefore invertible. We multiply (10) on the left by P^{-1} to get

$$
\begin{equation*}
\mathbf{x}^{\prime}=P^{-1} \mathbf{x} \tag{11}
\end{equation*}
$$

We note that P^{-1} is the transition matrix from E to B.
Then equation (11) (for \mathbf{y}) and equations (1) and (10) give

$$
\mathbf{y}^{\prime}=P^{-1} \mathbf{y}=P^{-1} A \mathbf{x}=P^{-1} A P \mathbf{x}^{\prime}
$$

Comparison with equation (8) shows that the new matrix D is given by

$$
\begin{equation*}
D=[T]_{B}=P^{-1} A P \tag{12}
\end{equation*}
$$

Similarity The two matrices A and D both describe the same linear transformation T, using different coordinates.

Definition 13 Two $n \times n$ matrices A and D are similar if there exists an invertible matrix P such that equation (12) holds. The matrix A is diagonalizable if it is similar to a diagonal matrix.

Eigenvectors We should choose a basis B of \mathbf{R}^{n} that is related in some way to T. In the most favorable situation (which is not that rare), we can find a basis B of \mathbf{R}^{n} that consists entirely of eigenvectors of T (or A). Specifically, we have

$$
\begin{equation*}
T\left(\mathbf{v}_{i}\right)=A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i} \tag{14}
\end{equation*}
$$

for each i, where λ_{i} denotes the associated eigenvalue. On comparing equations (14) and (7), we deduce that the new matrix D is a diagonal matrix, with diagonal entries $d_{i i}=\lambda_{i}$ and $d_{i j}=0$ for $i \neq j$.

THEOREM 15 (=Thm. 7.2.1) The following conditions on the matrix A are equivalent:
(a) A is diagonalizable;
(b) \mathbf{R}^{n} has a basis of eigenvectors of A;
(c) There is a basis B of \mathbf{R}^{n} such that $D=[T]_{B}$ is a diagonal matrix.

Proof We have just shown that (b) implies (a). The argument works just as well in reverse to show that (a) implies (b): if a matrix P exists as in equation (12) with D diagonal, we take \mathbf{v}_{j} as the j-th column of P and then equation (7) shows that \mathbf{v}_{j} is an eigenvector. Finally, equation (7) shows that (b) and (c) are equivalent.

