problems	$1-8(16)$	$7-16(18)$	$17-20(16)$	total(50)
scores				

Exam \#2, October 30, Calculus II (107), Fall, 2015, W. Stephen Wilson

I agree to complete this exam without unauthorized assistance from any person, materials or device.
Name (signature): \qquad Date: \qquad
Name (print): \qquad

TA Name and section: \qquad

NO CALCULATORS, NO PAPERS, SHOW WORK. (50 points total)

Let $Z=\binom{x}{y}$ with the system of differential equations $\frac{d Z}{d t}=A Z$. In the following problems you will be given an A. You are to say which kind of equilibrium the origin is (of the 6 possible) (1 point) and say why it is that kind (1 point).

1. (2 points) $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$
2. (2 points) $A=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
3. (2 points) $A=\left(\begin{array}{cc}-1 & 0 \\ 0 & -2\end{array}\right)$
4. (2 points) $A=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)$
5. (2 points) $A=\left(\begin{array}{cc}-1 & -1 \\ 1 & -1\end{array}\right)$
6. (2 points) $A=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
7. (2 points) $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$
8. (2 points) $A=\left(\begin{array}{ll}1 & 0 \\ 2 & 3\end{array}\right)$

For the rest of the exam we use the function $f(x, y)=x^{2}+y^{2}-2 x-2 y+2$.
9. (2 points) Compute the gradient of f.
10. (2 points) Find all critical points for f.
11. (2 points) Compute the Hessian for f.
12. (3 points) $f(x, y)=x^{2}+y^{2}-2 x-2 y+2$. Compute the Hessian at each of the critical points you found and say what kind of critical point each is, i.e. local max, local min, or a saddle point. Say why.
13. (3 points) $f(x, y)=x^{2}+y^{2}-2 x-2 y+2$. Find an equation for the tangent plane to the graph at the point given by $(x, y)=(0,0)$.
14. (2 points) Find the directional derivative of f at $(0,0)$ in the direction of maximal slope.
15. (2 points) $f(x, y)=x^{2}+y^{2}-2 x-2 y+2$. Find the directional derivative of f at $(0,0)$ in the direction of $(1,-1)$.
16. (2 points) Give an equation for the tangent line to the level curve at $(0,0)$.
17. (4 points) $f(x, y)=x^{2}+y^{2}-2 x-2 y+2$. Find an equation for the tangent line through $f(0,0)$ in the direction of $(1,-1)$.
18. (4 points) $f(x, y)=x^{2}+y^{2}-2 x-2 y+2$. If x and y are functions of t, give the formula for $\frac{d f}{d t} ?$
19. (4 points) $f(x, y)=x^{2}+y^{2}-2 x-2 y+2$. Find the maximum and minimum for the function when restricted to $x^{2}+y^{2} \leq 4$
20. (4 points) $f(x, y)=x^{2}+y^{2}-2 x-2 y+2$. Find the maximum and minimum for the function on the boundary of the unit square with corners $(0,0),(0,1),(1,0)$, and $(1,1)$. Find the two points and the value of f at them.

