problems	$1(3)$	$2-6(18)$	$7-11(18)$	$12-15(11)$	total(50)
scores					

Exam \#1, September 28, Calculus II (107), Fall, 2015, W. Stephen Wilson

I agree to complete this exam without unauthorized assistance from any person, materials or device.
Name (signature): \qquad Date: \qquad
Name (print): \qquad
TA Name and section: \qquad

NO CALCULATORS, NO PAPERS, SHOW WORK, put answers in BOXES.

1. (3 points) Let $-\infty<s<t<\infty$, evaluate

$$
\int_{s}^{t} e^{-x} d x
$$

or explain why it diverges. Show work, put answers in a box.
2. (4 points) Show work. Put answers in boxes.

Consider the differential equation

$$
\frac{d y}{d x}=\frac{y^{2}-4}{2 y} .
$$

(a) Find all of the equilibrium points for $y>0$.
(b) State whether each is a stable or unstable equilibrium and explain why.
3. (3 points)

Consider the differential equation

$$
\frac{d y}{d x}=\frac{y^{2}-4}{2 y}
$$

If $y=f(x)$ is the solution for the differential equation with initial conditions $y=4$ when $x=0$, make a rough sketch of the graph.
4. (4 points) Solve the differential equation

$$
\frac{d y}{d x}=\frac{y^{2}-4}{2 y} .
$$

explicitly for the case where $y=3$ when $x=0$. Show work and put your answer in a box.
5. (2 points) Show work and put your answer in a box. Consider the differential equation.

$$
\frac{d y}{d x}=\frac{y^{2}-4}{2 y}
$$

If $y=2$ when $x=0$, what is y when $x=2$?
6. (5 points) Write down the Leslie matrix for the situation where each newborn survives to age 1 , each 1 year old survives to age 2 , there are no 3 year olds, each newborn creates 1 newborn the next year, each 1 year old creates 2 newborns, and each 2 year old creates 1 newborn.
7. (3 points) Show work and put your answer in a box. Solve the simultaneous linear equations:
$x\binom{6}{1}+y\binom{-2}{1}=\binom{4}{2}$
8. (4 points) Show work and put your answers in a box. Calculate (a) the largest eigenvalue and (b) the smallest eigenvalue for $A=\left(\begin{array}{cc}1 & 3 \\ \frac{1}{4} & 0\end{array}\right)$.
9. (4 points) Show work and put your answers in a box. For $A=\left(\begin{array}{cc}1 & 3 \\ \frac{1}{4} & 0\end{array}\right)$, calculate the eigenvectors for (a) the largest eigenvalue. Choose the one with coordinate 1 for the second coordinate; (b) the smallest eigenvalue. Choose the one with coordinate 1 for the second coordinate.
10. (4 points) For the matrix $A=\left(\begin{array}{cc}1 & 3 \\ \frac{1}{4} & 0\end{array}\right)$, compute $A^{k}\binom{4}{2}$.
11. (3 points) Show work and put your answers in a box. If $A^{k}\binom{4}{2}=\binom{a_{k}}{b_{k}}$, compute the limit as k goes to infinity of $\frac{a_{k}}{b_{k}}$.
12. (3 points) Show work and put your answers in a box. Interpret the Leslie matrix in terms of newborns and one-year olds: $A=\left(\begin{array}{cc}1 & 3 \\ \frac{1}{4} & 0\end{array}\right)$
13. (3 points) Show work and put your answers in a box. Considering the Leslie matrix used in the last problem. Start with a population of N_{0} newborns and $N_{1} 1$-year olds with $\left(N_{0}, N_{1}\right) \neq(0,0)$, as k goes to infinity, what is the ratio of the newborns to the 1 -year olds?
14. (2 points) Show work and put your answers in a box. Using the same Leslie matrix. Find a population $\left(N_{0}, N_{1}\right)$ such that the total population $N_{0}+N_{1}$ doesn't change from year 0 to year 1 .
15. (3 points) Show work and put your answers in a box. Find all solutions to the following equation. If your answer is a line in 3 -space, give it in terms of a parametric equation, i.e. $r=r_{0}+t u$ where r_{0} and u are vectors.

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
5 & 6 & 7 \\
3 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
4 \\
8 \\
0
\end{array}\right)
$$

