Exam \#1, September 29, Calculus II (107), Fall, 2014, W. Stephen Wilson

I agree to complete this exam without unauthorized assistance from any person, materials or device.
Name (signature): \qquad Date: \qquad
Name (print): \qquad
TA Name and section:

NO CALCULATORS, NO PAPERS, SHOW WORK. (50 points total)

1. (2 points)

$$
\int_{0}^{2} \frac{d x}{(x-1)^{3}}
$$

Choose one (show work):
(a) diverges to infinity
(b) just diverges
(c) converges to 0
(d) none of the above
2. (4 points)
(a) Find the general solution (i.e. y as a function of x) for the differential equation: $\frac{d y}{d x}=a x y^{2}$
(b) Find the specific solution to the above equation with the initial condition that $y=1$ when $x=0$.
3. (6 points) Consider the differential equation: $\frac{d y}{d x}=(y-1)(y-2)^{2}(y-3)$.

Find the 3 equilibrium points and state, in each case, whether it is stable, unstable, or a cross between the two. (show work)
4. (8 points) Consider the differential equation: $\frac{d y}{d x}=(y-1)(y-2)^{2}(y-3)$.

Make a rough sketch of the solution of the differential equation for the 4 initial conditions when $x=0: y=0, y=3 / 2, y=5 / 2, y=4$. Include the equilibrium points in your sketch.
5. (5 points) Write down the Leslie matrix for the situation where 75% of newborns survive to age $1,25 \%$ of 1 year olds survive to age 2, there are no 3 year olds, each newborn creates 3 newborns the next year, each 1 year old creates 2 newborns, and each 2 year old creates 1 newborn.
6. (4 points) Solve the simultaneous linear equations:
$x\binom{3}{1}+y\binom{-1}{1}=\binom{2}{2}$
7. (3 points) Interpret the Leslie matrix: $A=\left(\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right)$
8. (4 points) Calculate (a) the largest eigenvalue and (b) the smallest eigenvalue for $A=\left(\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right)$.
9. (4 points) For $A=\left(\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right)$, calculate the eigenvectors for (a) the largest eigenvalue. Choose the one with coordinate 1 for the second coordinate; (b) the smallest eigenvalue. Choose the one with coordinate 1 for the second coordinate.
10. (4 points) For the matrix $A=\left(\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right)$, compute $A^{k}\binom{2}{2}$.
11. (3 points) Considering the Leslie matrix used in the last few problems. Start with a population of two (2) newborns and two (2) 1-year olds, as k goes to infinity, what is the ratio of the newborns to the 1-year olds?
12. (3 points) Considering the Leslie matrix used in the last few problems. Start with a completely arbitrary non-zero population. As k goes to infinity, what is the ratio of the newborns to the 1-year olds.

