
1) Compute the eigenvalues λ1 and λ2 and corresponding eigenvectors for
the matrix

A =

[
2 1
2 3

]
.

Solution: To compute the eigenvalues we need to solve the eigenvalue
equation

0 = det

[
2− λ 1

2 3− λ

]
= (λ−2)(λ−3)−2 = λ2−5λ+4 = (λ−1)(λ−4).

Thus, the eigenvalues are λ1 = 1, and λ2 = 4.

The eigenvectors for λ1 = 1 will be solutions of
[
2 1
2 3

] [
u1

u2

]
= 1 ·

[
u1

u2

]
,

which can be rewritten as

2u1 + u2 = u1

2u1 + 3u2 = u2,

which reduces to u1 +u2 = 0. Thus the eigenvectors for λ1 = 1 are {(t,−t) :
t ∈ R}.

The eigenvectors for λ2 = 4 will be solutions of
[
2 1
2 3

] [
u1

u2

]
= 4 ·

[
u1

u2

]
,

which can be rewritten as

2u1 + u2 = 4u1

2u1 + 3u2 = 4u2,

which reduces to 2u1 − u2 = 0. Thus the eigenvectors for λ2 = 4 are
{(t, 2t) : t ∈ R}.

2) If A is the matrix in the previous problem, compute

A4

[
1
2

]
.
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Solution: The vector

[
1
2

]
is an eigenvector of A with eigenvalue 4. There-

fore, since 44 = 256

A4

[
1
2

]
= 44 ·

[
1
2

]
=

[
1
2

]
=

[
256
512

]
.

3) Find the linear approximation to

f(x, y) =

[
ye−x

sin x + cos y

]

at (0, 0).

Solution: We first compute the Jacobi matrix of f :
[

∂f1

∂x
∂f1

∂y
∂f2

∂x
∂f2

∂y

]
=

[−ye−x e−x

cos x − sin y

]
.

This matrix evaluated at (0, 0) is
[
0 1
1 0

]
.

Therefore, the linear approximation to f at (0, 0) will be

L(x, y) = f(0, 0) +

[
0 1
1 0

] [
x
y

]
=

[
0
1

]
+

[
y
x

]

=

[
y

1 + x

]
.

4) In which direction does

f(x, y) = 3xy − 1

2
x2

increase most rapidly at (1, 1)?

Solution: The gradient of f is

∇f(x, y) =

[
3y − x

3x

]
.

Since,

∇f(1, 1) =

[
2
3

]
,



and |∇f(1, 1)| =
√

22 + 32 =
√

13, the function increases most rapidly in
the direction [

2/
√

13

3/
√

13

]
.

5) Let

A =

[
1 3
−1 −2

]
, and x(t) =

[
x1(t)
x2(t)

]
.

Find the stable equilibria (if any) of the equation

d

dt
x(t) = Ax(t).

Solution: Let us first compute the eigenvectors. These are solutions of the
eigenvalue equation

0 = det

[
1− λ 3
−1 −2− λ

]
= (λ− 1)(λ + 2) + 3 = λ2 + λ + 1.

The solutions are given by the quadratic formula

λ1,2 =
−1±√1− 4

2
= −1

2
± i

√
3

2
.

Since the eigenvalues are complex conjugates with negative real part, we
conclude that (0, 0) is the only equilibrium. Indeed, any solution, x(t), of
the system will tend to (0, 0) as t → +∞.

6) Consider the system with

dx1

dt
= −2x1 + x2

dx2

dt
= 2x1 − x2,

with the initial condition x1(0) = 4, x2(0) = 5. Find limt→+∞ x1(t), and
limt→+∞ x2(t).

Solution: We first compute the eigenvalues of the system. These are solu-
tions of the eigenvalue equation

0 =

[−2− λ 1
2 −1− λ

]
= (λ + 2)(λ + 1)− 2 = λ2 + 3λ.

Thus, the two eigenvalues are λ1 = 0, and λ2 = −3.



We next find eigenvectors. The ones for λ1 = 0 are solutions of the
equation

−2u1 + u2 = 0

2u1 − u2 = 0,

which reduces to u2 = 2u1. Thus,

[
1
2

]
is an eigenvector for the eigenvalue

λ1 = 0. The eigenvectors for λ2 = −3 are solutions of

−2u1 + u2 = −3u1

2u1 − u2 = −3u2,

which reduces to u1 + u2 = 0. Thus,

[
1
−1

]
is an eigenvector for λ2 = −3.

Because of these calculations we know that the solution must be of the
form

c1

[
1
2

]
+ c2e

−3t

[
1
−1

]
,

where the constants c1 and c2 are determined by the initial conditions:[
4
5

]
=

[
c1 + c2

2c1 − c2

]
.

By adding the two rows, we find that c1 = 3, which in turn leads to c2 = 1.
Therefore, the solution is

x(t) = 3

[
1
2

]
+ e−3t

[
1
−1

]
,

which yields the answer

lim
t→+∞

x1(t) = 3, and lim
t→+∞

x2(t) = 6.


