
110.107 CALCULUS II FINAL EXAMINATION SOLUTIONS
14 December 2001

1. Let L(t) denote the length of a fish at time t and assume that the fish grows according
to the von Bertalanffy equation

dL

dt
= k(40− L(t)) with L(0) = 4

If L(5) = 22, find the value of the constant k and find the asymptotic length of the
fish.

This differential equation is separable: we re-write it and solve:

dL

40− L
= kdt

− ln |40− L| = kt+ C

ln |40− L| = −kt+ C ′

|40− L| = C ′′e−kt

Now we apply the condition L(0) = 4 into the above result to obtain 40− 4 = C ′′, so

|40− L| = 36e−kt

If 0 ≤ L(t) ≤ 40, L(t) = 40− 36e−kt

Finally, the condition L(5) = 22 gives:

L(5) = 22

22 = 40− 36e−5k

36e−5k = 18

2 = e5k

ln 2 = 5k

k =
ln 2

5

The asymptotic length is

lim
t→∞

L(t) = lim
t→∞

40− 36e−kt = 40

since k > 0.
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2. Suppose that N(t) denotes the size of a population at time t and that

dN

dt
= 1.5N

(
1− N

100

)
Solve this differential equation when N(0) = 50 and determine the size of the popula-
tion in the long run (i.e., calculate limt→∞N(t)).

We re-write this separable equation as follows:

dN

dt
= 1.5N

(
100−N

100

)
100dN

N(100−N)
= 1.5dt

A simple partial fractions decomposition gives∫ 100dN

N(100−N)
=
∫ dN

N
+
∫ dN

100−N
= ln |N | − ln |100−N | = 1.5t+ C

Simplifying, we get

ln
∣∣∣∣ N

100−N

∣∣∣∣ = 1.5t+ C∣∣∣∣ N

100−N

∣∣∣∣ = C ′e1.5t

If 0 ≤ N < 100,

N = (100−N)C ′e1.5t

N =
100C ′e1.5t

1 + C ′e1.5t

Using the condition N(0) = 50 gives C ′ = 1, so

N(t) =
100e1.5t

1 + e1.5t
=

100

1 + e−1.5t

We see that

lim
t→∞

N(t) = lim
t→∞

100

1 + e−1.5t
= 100

since the denominator goes to 1.

3. Let p = p(t) be the fraction of occupied patches in a metapopulation model, and
assume that

dp

dt
= 2p(1− p)− p for t ≥ 0

Find all equilibria of the above equation that are in the interval [0,1] and determine
their stability.
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This is an autonomous differential equation with g(p) = 2p− 2p2− p = p(1− 2p), and
so we have equilibria when p = 0 and p = 1/2. To investigate the stability of these
equilibria, we look at g′(p) = 1−4p. When p = 0, g′(0) = 1 > 0 and so this equilibrium
is unstable. When p = 1/2, g′(1/2) = −1 < 0 and so this equilibrium is locally stable.

4. Suppose that a drug is administered to a person in a single dose, and assume that the
drug does not accumulate in body tissue but is excreted through urine. Let x1(t) be
the concentration in the body after t hours and x2(t) the concentration in the urine
after t hours. If the original dose is 100mg and it takes 30 minutes for the drug to be at
one-half of its initial concentration in the body, find a system of differential equations
for x1 and x2.

Since the drug flows only one way from the body into the urine, we use the following
2-compartment model:

x1
ax1−→ x2

This corresponds to the system

dx1

dt
= −ax1

dx2

dt
= ax1

All we need to do is to figure out the value of a. The easiest way to do this is to
actually write down the solution for x1. This is just x1 = ce−at. Since x1(0) = 100,
we have c = 100. To find a, we note that after 1/2 hour, x1 is 50, i.e. x1(.5) = 50.
Putting this information into the equation for x1 gives

50 = 100e−a/2

1/2 = e−a/2

− ln 2 = −a/2
a = 2 ln 2

The system is therefore

dx1

dt
= −2 ln 2x1

dx2

dt
= 2 ln 2x1
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5. A simple two-compartment model for gap dynamics in a forest assumes that gaps are
created by disturbances and that they revert back to forest as the trees grow in the
gaps. Let x1(t) denote the area occupied by the gaps, and x2(t) the area occupied by
the adult trees. If the dynamics are given by the system

dx1

dt
= −0.3x1 + 0.2x2

dx2

dt
= 0.3x1 − 0.2x2

compute the eigenvalues and eigenvectors for this system, and give the general solution.

We have the matrix equation
dx

dt
= Ax

where

A =

[
−0.3 0.2
0.3 −0.2

]
To find the eigenvalues we calculate

det(A−λI) =

∣∣∣∣∣ −0.3− λ 0.2
0.3 −0.2− λ

∣∣∣∣∣ = (−0.3−λ)(−0, 2−λ)−(0.3)(0.2) = λ(0.5+λ)

The eigenvalues are λ1 = −0.5, λ2 = 0. Eigenvectors for λ1 satisfy the system

−0.3x1 + 0.2x2 = 0.5x1

0.3x1 − 0.2x2 = 0.5x2

This reduces to x1 = −x2 and so λ1 has

[
1
−1

]
as an eigenvector. Similarly, eigenvec-

tors for λ2 satisfy

−0.3x1 + 0.2x2 = 0

0.3x1 − 0.2x2 = 0

This reduces to 0.3x1 = 0.2x2, and so λ2 has

[
2
3

]
an eigenvector.

The general solution is therefore

x(t) = c1e
−0.5t

[
1
−1

]
+ c2

[
2
3

]
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6. Chemotaxis is the chemically directed movement of organisms up a concentration gradi-
ent. The slime mold Dictyostelium discoideum exhibits this phenomenon; single-celled
amoeba of this species move up the concentration gradient of a chemical called cyclic
AMP. If the concentration of the cyclic AMP at the point (x,y) in the xy-plane is given
by

f(x, y) = 6
√

2xy + 1

determine in which direction an amoeba at the point (3,4) will move if its movement
is directed by chemotaxis.

The direction of movement will be in the direction of the gradient of f(x). We calculate:

∇f(x, y) =

[ ∂f(x,y)
∂x

∂f(x,y)
∂y

]
=

[
61

2
(2xy + 1)−1/22y

61
2
(2xy + 1)−1/22x

]

At (x, y) = (3, 4), we have

∇f(3, 4) =

[
3(24 + 1)−1/28
3(24 + 1)−1/26

]
=

[
24
5
18
5

]

7. Suppose the mass of a certain animal is normally distributed with a mean of 3750 g
and a standard deviation of 350 g. What percentage of the population has a mass
between 3225 g and 3925 g?

he lower end of our interval is 3225, which is 1.5 standard deviations below the mean.
The right-hand endpoint is 3925, which is 0.5 standard deviations above the mean.
The percentage in this interval will be the same as the percentage between the same
standard deviation values for the standard normal distribution:

P = F (0.5)− F (−1.5)

= F (0.5)− [1− F (1.5)]

= .6915− [1− .9332]

= .6915− .0668

= .6247

8. Consider the exponential distribution

f(x) =

{
λe−λx for x > 0

0 for x ≤ 0

a) Show that the mean of this distribution is 1/λ.

We have
µ =

∫ ∞
−∞

xf(x) dx =
∫ ∞
0

λxe−λxdx
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Integrating by parts with u = x and dv = λe−λxdx, we get∫
λxe−λxdx = −xe−λx +

∫
e−λxdx = −xe−λx − 1

λ
e−λx + C

The improper integral is thus:∫ ∞
0

λxe−λxdx = lim
b→∞
−be−λb + 0− lim

b→∞

1

λ
e−λb +

1

λ
= 0 + 0− 0 +

1

λ
=

1

λ

The first limit requires L’Hopital’s Rule to calculate:

lim
b→∞
−be−λb = lim

b→∞

−b
eλb

= lim
b→∞

−1

λeλb
= 0

b) Recall that if f(x) is a continuous distribution, then the median is defined as the
number m such that ∫ m

−∞
f(x) dx =

∫ ∞
m

f(x) dx =
1

2

Calculate the median of the exponential distribution above.

Here, ∫ m

−∞
f(x) dx =

∫ m

0
λe−λxdx = −e−λx

∣∣∣m
0

= −e−λm + 1

For this integral to evaluate to 1/2, we require

−e−λm + 1 = 1/2

e−λm = 1/2

−λm = ln 1/2 = − ln 2

λm = ln 2

m =
ln 2

λ

9. Suppose that the number of seeds that a plant produces is normally distributed with
a mean of 200 and a standard deviation of 25. Find the probability that in a sample
of 4 plants, at least one produces more than 250 seeds.

We examine the complementary event that no plant produces more than 250 seeds; i.e.,
each plant produces no more than 250 seeds. The probability that a plant produces
no more than 250 seeds is F (2), since 250 represents two standard deviations above
the mean. Since the selection of each plant is independent of the selection of the other
plants, the event that all four plants produce no more than 250 seeds is just F (2)4.
The complementary event, that at least one plant produces more than 250 seeds, has
probability

P = 1− F (2)4 = 1− .97724 ≈ .0882
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