110.107 Calculus II Fall 2012 Exam 2 Practice

Problem 1 Show that following limits does not exist.

- (a) $\lim_{(x,y)\to(0,0)} \frac{x+y}{x^2+y}$
- (b) $\lim_{(x,y)\to(0,0)} \frac{x^2 + xy}{x^2 + y^2}$

Solution: (a) First, we consider the line y = x and compute the limit along this line:

$$\lim_{x \to 0} \frac{2x}{x^2 + x} = \lim_{x \to 0} \frac{2}{x + 1} = 2$$

On the other hand, considering the curve $y = x^2$ we see that

$$\lim_{x \to 0} \frac{x + x^2}{2x^2} = \lim_{x \to 0} \frac{1 + x}{2x} = \frac{1}{2}$$

therefore, the limit does not exist.

(b) Again computing the limit along y = 0 we get

$$\lim_{x \to 0} \frac{x^2}{x^2} = 1.$$

On the other hand, computing the limit along y = -x we get

$$\lim_{x \to 0} \frac{x^2 - x^2}{2x^2} = 0$$

hence, the limit does not exist.

Problem 2 Let $f(x,y) = x^y$ for x > 0, y > 0. Compute $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial y^2}, \frac{\partial^2 f}{\partial x^2 y}$.

Solution

$$\begin{split} \frac{\partial f}{\partial x} &= yx^{y-1} \\ \frac{\partial f}{\partial y} &= \ln(x)x^y \\ \frac{\partial^2 f}{\partial x^2} &= (y^2 - y)x^{y-2} \\ \frac{\partial^2 f}{\partial y^2} &= (\ln(x))^2 x^y \\ \frac{\partial^2 f}{\partial x \partial y} &= \frac{1}{x}x^y + \ln(x)yx^{y-1} = x^{y-1} + y\ln(x)x^{y-1} \end{split}$$

Problem 3 Let $G(x, x) = x^2 + xy^2 - \frac{y^2}{2}$ and $p = (-1, 1) \in \mathbb{R}^2$.

- (a) Calculate the equation of the plane tangent to the graph of G at the point p.
- (b) Calculate the gradient of G at the point p (that is, compute $\nabla G(-1,1)$).
- (c) Find a critical point of G(x, y) on the domain \mathbb{R}^2 and determine whether it is a local maximum, local minimum, or neither (Hint: The Hessian will help here.)

Solution (a) The equation of the tangent plane to the graph of G at p is of the form

$$z - z_0 = A(x - x_0) + B(y - y_0)$$

where $A = \frac{\partial G}{\partial x}(p)$ and $B = \frac{\partial G}{\partial y}(p)$ and $z_0 = G(p)$. Computing these values:

$$z_0 = G(-1,1) = -\frac{1}{2}$$
$$A = \frac{\partial G}{\partial x}(-1,1) = (2x+y^2)|_{x=-1,y=1} = -1$$
$$B = \frac{\partial G}{\partial y}(-1,1) = (2xy-y)|_{x=-1,y=1} = -3$$

Thus, the equation of the plane is given by

$$z + \frac{1}{2} = -(x+1) - 3(y-1).$$

(b)The Gradient of G is given by

$$\nabla G(-1,1) = \begin{bmatrix} \frac{\partial G}{\partial x} \\ \frac{\partial G}{\partial y} \end{bmatrix}_{x=-1,y=1} = \begin{bmatrix} -1 \\ -3 \end{bmatrix}$$

(c) To find the critical point(s) we need to solve

$$\nabla G(x,y) = \left[\begin{array}{c} 0\\ 0 \end{array} \right]$$

That is

$$2x + y^2 = 0$$
$$y(2x - 1) = 0$$

The second equation implies that either y = 0 or 2x - 1 = 0. If y = 0 then x = 0 by the first equation. If 2x - 1 = 0 then $x = \frac{1}{2}$ and from the first equation $y^2 = -1$ which has no real solutions. Thus the function G(x, y) has only one critical point in \mathbb{R}^2 which is (0, 0).

Now, we apply the second derivative test:

$$Hes(G)(x,y) = \begin{bmatrix} G_{xx} & G_{xy} \\ G_{yx} & G_{yy} \end{bmatrix}_{x=0,y=0} = \begin{bmatrix} 2 & 2y \\ 2y & 2x-1 \end{bmatrix}_{x=0,y=0} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$$

Since the determinant of the Hessian D = -2 < 0 by second derivative test the point (0,0) is a saddle point i.e. it is neither a local min or max.

Problem 4 Given the system

$$\begin{array}{rcl} \displaystyle \frac{dx}{dt} & = & x+y \\ \displaystyle \frac{dy}{dt} & = & 4x-2y \end{array}$$

- (a) Solve the system for the particular solution that passes through the point (x, y) = (1, 0).
- (b) Find all equilibrium solutions and determine their stability.
- (c) Draw the solution passing through the point (x, y) = (1, 0) on the direction field for all $t \in \mathbb{R}$. Also draw the solution passing through the point (x, y) = (1, 1) for all $t \in \mathbb{R}$. (Use the Java applet to produce the direction filed)

Solution (a) We rewrite the system in the matrix from

$$\frac{d\vec{x}}{dt} = A\vec{x} \text{ where } A = \begin{bmatrix} 1 & 1\\ 4 & -2 \end{bmatrix} \text{ and } \vec{x}(t) = \begin{bmatrix} x_1(t)\\ x_2(t) \end{bmatrix}$$

Given this system, we can write the general solutions as follows: If A has two distinct real eigenvalues λ_1, λ_2 and \vec{u}_1, \vec{u}_2 are the corresponding eigenvectors then the general solution to the above system is given by

$$\vec{x}(t) = c_1 \vec{u}_1 e^{\lambda_1 t} + c_2 \vec{u}_2 e^{\lambda_2 t}.$$

To find eigenvalues we solve the characteristic equation $det(\lambda I_2 - A) = 0$ which is $\lambda^2 + \lambda - 6 = 0$. Thus, eigenvalues of A are $\lambda_1 = 2$ and $\lambda_2 = -3$. For the eigenvalue $\lambda = 2$ the eigenvector equation $A\vec{u} = 2\vec{u}$ leads to the system x + y = 2x and 4x - 2y = 2y. Remember these two equations are ALWAYS the same equation when finding the eigenvectors, and any vector \vec{u} that satisfies either equation one works. The first equation leads directly to x = y. Choose x = 1, so that y = 1, and an eigenvector for $\lambda_1 = 2$ is $\vec{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. If we do the same thing for $\lambda_2 = -3$, we will get the equation x + y = -3x, and if we choose x = 1, we get y = -4, and for $\lambda_2 = -3$, we get $\vec{u}_2 = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$. Hence the general solution to this system is

$$\vec{x}(t) = c_1 \begin{bmatrix} 1\\1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1\\-4 \end{bmatrix} e^{-3t}$$

For our particular solution, we have a starting point $\vec{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Throw that into the general solution evaluated at t = 0, to get the values of the two unknown constants c_1 and c_2 that correspond to the solution that passes through the point (1,0). Hence,

$$\begin{bmatrix} 1\\0 \end{bmatrix} = c_1 \begin{bmatrix} 1\\1 \end{bmatrix} + c_2 \begin{bmatrix} 1\\-4 \end{bmatrix}$$

This leads to the two equations $1 = c_1 + c_2$ and $0 = c_1 - 4c_2$. Solving these two leads to $c_1 = \frac{4}{5}$ and $c_2 = \frac{1}{5}$. Hence our particular solution is

$\vec{x}(t) = \frac{4}{5} \begin{bmatrix} 1\\1 \end{bmatrix} e^{2t} + \frac{1}{5} \begin{bmatrix} 1\\-4 \end{bmatrix} e^{-t}$

(b) The only equilibrium of a linear system where the matrix A has non-zero determinant (like this one) is the origin. And since the two eigenvalues here are real, distinct, non-zero, and of different signs. Thus, the origin is a saddle and unstable.

(c) On the next page, the solution passing through the point (x, y) = (1, 0) is drawn on the direction field for all $t \in \mathbb{R}$. The solution passing through the point (x, y) = (1, 1) is also drawn. Note that these two points are marked.

													_						
,			V	V	v	ł	V	V	Ń	Ň	N	N							ß
ĺ	ľ	İ			ţ	ł	V	¥	V	N	¥	٩	4	>	~	7	А	1	
/	\¥ 	¥ 	V 	v 		Ţ	ľ	V	V	N	W	٩	7	≻	7	1	1	1	1
/	Ý	V	¥	\ ↓	¥ I	¥	N N	,	J		ł	4	7	~	1	1	1	1	1
,	V	v	V	V	¥	¥	¥	V	W		``							1	1
	ļ	V	V	V	¥	¥	¥	¥	¥	V	4	7	>	7	4	[]	7		
	ľ		ļ	ļ	Ļ	√	¥	¥	¥	-	2.5	7	7	1	//	1	1	1	1
1	¥ I	¥ I	V I	•	ļ	J,	ł	¥	۷	₩	4	>	1	1	1	1	1	1	1
	V	V	¥	¥	¥	¥	•	•	w/		4	7			1	1	1	1	1
	ł	ł	V	V	V	¥	¥	¥	W			ĺ		0).		A	1	1	1
	ļ	ł	ł	ł	¥	¥	¥	۷	۷	¥	>			.01	Ţ	7	ľ		
		ļ	ļ	ł	¥	¥	¥	V	۷	¥	1	Λ/	4	A	1	1	1	1	Ĩ
	¥ /	₩ /	• 		-2.5					00	r 0.\$	(^	1.0,0	.0)	2,5	Ą	1	1	1
	ł	V	¥	V	V	,			k				٨	٨	Ŵ	1	1	1	1
	ł	V	ł	ł	V	V	V	V		k	۸	n,	4	,		Å	, M	ţ	1
	ļ	1	ł	ł	V	V	V	¥	<	k	٨	Å	٨	ſ	T	T			/
	./	J,	<i>k</i>	¥	¥	¥	¥	4	٢	•	M	A	¥	ţ	↑	1	1	Î	Ĩ
	<i>V</i>	v,	,	.,	<i>V.</i>	k	V	<	K		٨		Ą	ţ	∱	ſ	ſ	ſ	1
	V	V	¥	V	<i>v</i>				,			A.	٨	٨	٨	≬	ſ	↑	1
	1	4	¥	¥	¥	k	L	~	K		-2.5		T	1	Å	ı ۸	, ∖	, ∖	
	4	4	¥	¥	¥	Ł	<	٢	r	N	Ņ	1	ſ	ſ	ĩ			 	
	ıl.	sk	k	¥	¥	4	-	٢	M	N	Ņ	١١	1	ł	ſ	ſ	ſ	Ť	
	V				,	_	-	•	N	N	Ņ	٨	1	Ą	Ą	1	1	^	Î
	V	K	¥	¥	æ	×	4	* .			, k	M	h.	۸	۱	1	۲	ſ	À I
	V	K	K	k	◄	•	٢	Þ	k		7"	T	Ţ	۱ ۸	۱ ۸	۱ ۸	I ∧	1	
					_	_	~	N	A	N	N	1	1	<u> </u>	Ţ				