
110.107 Calculus II
Fall 2012

Exam 2 Practice

Problem 1 Show that following limits does not exist.

(a) lim(x,y)→(0,0)
x+y
x2+y

(b) lim(x,y)→(0,0)
x2+xy
x2+y2

Solution: (a) First, we consider the line y = x and compute the
limit along this line:

lim
x→0

2x

x2 + x
= lim

x→0

2

x+ 1
= 2

On the other hand, considering the curve y = x2 we see that

lim
x→0

x+ x2

2x2
= lim

x→0

1 + x

2x
=

1

2

therefore, the limit does not exist.

(b) Again computing the limit along y = 0 we get

lim
x→0

x2

x2
= 1.

On the other hand, computing the limit along y = −x we get

lim
x→0

x2 − x2

2x2
= 0

hence, the limit does not exist.

Problem 2 Let f(x, y) = xy for x > 0, y > 0. Compute ∂f
∂x
, ∂f
∂y
, ∂

2f
∂x2
, ∂

2f
∂y2
, ∂2f
∂x∂y

.



Solution
∂f

∂x
= yxy−1

∂f

∂y
= ln(x)xy

∂2f

∂x2
= (y2 − y)xy−2

∂2f

∂y2
= (ln(x))2xy

∂2f

∂x∂y
=

1

x
xy + ln(x)yxy−1 = xy−1 + yln(x)xy−1

Problem 3 Let G(x, x) = x2 + xy2 − y2

2
and p = (−1, 1) ∈ R2.

(a) Calculate the equation of the plane tangent to the graph of
G at the point p.

(b) Calculate the gradient of G at the point p (that is, compute
∇G(−1, 1)).

(c) Find a critical point of G(x, y) on the domain R2 and de-
termine whether it is a local maximum, local minimum, or
neither (Hint: The Hessian will help here.)

Solution (a) The equation of the tangent plane to the graph of G
at p is of the form

z − z0 = A(x− x0) +B(y − y0)

where A = ∂G
∂x
(p) and B = ∂G

∂y
(p) and z0 = G(p). Computing these

values:

z0 = G(−1, 1) = −1

2

A =
∂G

∂x
(−1, 1) = (2x+ y2)|x=−1,y=1 = −1

B =
∂G

∂y
(−1, 1) = (2xy − y)|x=−1,y=1 = −3



Thus, the equation of the plane is given by

z +
1

2
= −(x+ 1)− 3(y − 1).

(b)The Gradient of G is given by

∇G(−1, 1) =
[

∂G
∂x
∂G
∂y

]
x=−1,y=1

=

[
−1
−3

]
(c) To find the critical point(s) we need to solve

∇G(x, y) =
[
0
0

]
That is

2x+ y2 = 0

y(2x− 1) = 0

The second equation implies that either y = 0 or 2x− 1 = 0. If y = 0
then x = 0 by the first equation. If 2x− 1 = 0 then x = 1

2
and from

the first equation y2 = −1 which has no real solutions. Thus the
function G(x, y) has only one critical point in R2 which is (0, 0).

Now, we apply the second derivative test:

Hes(G)(x, y) =

[
Gxx Gxy

Gyx Gyy

]
x=0,y=0

=

[
2 2y
2y 2x− 1

]
x=0,y=0

=

[
2 0
0 −1

]
Since the determinant of the Hessian D = −2 < 0 by second deriva-
tive test the point (0, 0) is a saddle point i.e. it is neither a local
min or max.

Problem 4 Given the system

dx

dt
= x+ y

dy

dt
= 4x− 2y



(a) Solve the system for the particular solution that passes through
the point (x, y) = (1, 0).

(b) Find all equilibrium solutions and determine their stability.

(c) Draw the solution passing through the point (x, y) = (1, 0) on
the direction field for all t ∈ R. Also draw the solution passing
through the point (x, y) = (1, 1) for all t ∈ R. (Use the Java
applet to produce the direction filed)

Solution (a) We rewrite the system in the matrix from

d~x

dt
= A~x where A =

[
1 1
4 −2

]
and ~x(t) =

[
x1(t)
x2(t)

]
Given this system, we can write the general solutions as follows:
If A has two distinct real eigenvalues λ1, λ2 and ~u1, ~u2 are the corre-
sponding eigenvectors then the general solution to the above sys-
tem is given by

~x(t) = c1~u1e
λ1t + c2 ~u2e

λ2t.

To find eigenvalues we solve the characteristic equation det(λI2−
A) = 0 which is λ2 + λ− 6 = 0. Thus, eigenvalues of A are λ1 = 2 and
λ2 = −3. For the eigenvalue λ = 2 the eigenvector equation A~u = 2~u
leads to the system x + y = 2x and 4x − 2y = 2y. Remember these
two equations are ALWAYS the same equation when finding the
eigenvectors, and any vector ~u that satisfies either equation one
works. The first equation leads directly to x = y. Choose x = 1, so

that y = 1, and an eigenvector for λ1 = 2 is ~u1 =

[
1
1

]
. If we do the

same thing for λ2 = −3, we will get the equation x+ y = −3x, and if

we choose x = 1, we get y = −4, and for λ2 = −3, we get ~u2 =

[
1
−4

]
.

Hence the general solution to this system is

~x(t) = c1

[
1
1

]
e2t + c2

[
1
−4

]
e−3t

For our particular solution, we have a starting point ~x(0) =

[
1
0

]
.

Throw that into the general solution evaluated at t = 0, to get the



values of the two unknown constants c1 and c2 that correspond to
the solution that passes through the point (1, 0). Hence,[

1
0

]
= c1

[
1
1

]
+ c2

[
1
−4

]
This leads to the two equations 1 = c1 + c2 and 0 = c1 − 4c2. Solving
these two leads to c1 =

4
5

and c2 =
1
5

. Hence our particular solution
is

~x(t) =
4

5

[
1
1

]
e2t +

1

5

[
1
−4

]
e−3t

(b) The only equilibrium of a linear system where the matrix A
has non-zero determinant (like this one) is the origin. And since
the two eigenvalues here are real, distinct, non-zero, and of differ-
ent signs. Thus, the origin is a saddle and unstable.

(c) On the next page, the solution passing through the point
(x, y) = (1, 0) is drawn on the direction field for all t ∈ R. The
solution passing through the point (x, y) = (1, 1) is also drawn. Note
that these two points are marked.
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