110.107 Calculus II Fall 2012 Exam 2 Practice

Problem 1 Show that following limits does not exist.

- (a) $\lim_{(x,y)\to(0,0)} \frac{x+y}{x^2+y}$ x^2+y
- (b) $\lim_{(x,y)\to(0,0)}\frac{x^2+xy}{x^2+y^2}$ x^2+y^2

Solution: (a) First, we consider the line $y = x$ and compute the limit along this line:

$$
\lim_{x \to 0} \frac{2x}{x^2 + x} = \lim_{x \to 0} \frac{2}{x + 1} = 2
$$

On the other hand, considering the curve $y = x^2$ we see that

$$
\lim_{x \to 0} \frac{x + x^2}{2x^2} = \lim_{x \to 0} \frac{1 + x}{2x} = \frac{1}{2}
$$

therefore, the limit does not exist.

(b) Again computing the limit along $y = 0$ we get

$$
\lim_{x \to 0} \frac{x^2}{x^2} = 1.
$$

On the other hand, computing the limit along $y = -x$ we get

$$
\lim_{x \to 0} \frac{x^2 - x^2}{2x^2} = 0
$$

hence, the limit does not exist.

 $\textbf{Problem 2}\;\; \textbf{Let}\; f(x,y)=x^y\;\textbf{for}\; x>0, y>0.\;\textbf{Compute}\; \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^2 f}{\partial x^2}$ $\frac{\partial^2 f}{\partial x^2}, \frac{\partial^2 f}{\partial y^2}$ $\frac{\partial^2 f}{\partial y^2}, \frac{\partial^2 f}{\partial x \partial y}.$ Solution

$$
\frac{\partial f}{\partial x} = yx^{y-1}
$$

$$
\frac{\partial f}{\partial y} = \ln(x)x^y
$$

$$
\frac{\partial^2 f}{\partial x^2} = (y^2 - y)x^{y-2}
$$

$$
\frac{\partial^2 f}{\partial y^2} = (\ln(x))^2 x^y
$$

$$
\frac{\partial^2 f}{\partial x \partial y} = \frac{1}{x}x^y + \ln(x)yx^{y-1} = x^{y-1} + y\ln(x)x^{y-1}
$$

Problem 3 Let $G(x, x) = x^2 + xy^2 - \frac{y^2}{2}$ $\frac{p^2}{2}$ and $p=(-1,1)\in \mathbb{R}^2$.

- (a) Calculate the equation of the plane tangent to the graph of G at the point p.
- (b) Calculate the gradient of G at the point p (that is, compute $\nabla G(-1,1)$.
- (c) Find a critical point of $G(x, y)$ on the domain \mathbb{R}^2 and determine whether it is a local maximum, local minimum, or neither (Hint: The Hessian will help here.)

Solution (a) The equation of the tangent plane to the graph of G at p is of the form

$$
z - z_0 = A(x - x_0) + B(y - y_0)
$$

where $A = \frac{\partial G}{\partial x}(p)$ and $B = \frac{\partial G}{\partial y}(p)$ and $z_0 = G(p)$. Computing these values: 1

$$
z_0 = G(-1, 1) = -\frac{1}{2}
$$

\n
$$
A = \frac{\partial G}{\partial x}(-1, 1) = (2x + y^2)|_{x=-1, y=1} = -1
$$

\n
$$
B = \frac{\partial G}{\partial y}(-1, 1) = (2xy - y)|_{x=-1, y=1} = -3
$$

Thus, the equation of the plane is given by

$$
z + \frac{1}{2} = -(x+1) - 3(y-1).
$$

(b) The Gradient of G is given by

$$
\nabla G(-1,1) = \left[\begin{array}{c} \frac{\partial G}{\partial x} \\ \frac{\partial G}{\partial y} \end{array}\right]_{x=-1,y=1} = \left[\begin{array}{c} -1 \\ -3 \end{array}\right]
$$

(c) To find the critical point(s) we need to solve

$$
\nabla G(x,y) = \left[\begin{array}{c} 0 \\ 0 \end{array} \right]
$$

That is

$$
2x + y^2 = 0
$$

$$
y(2x - 1) = 0
$$

The second equation implies that either $y = 0$ or $2x - 1 = 0$. If $y = 0$ then $x = 0$ by the first equation. If $2x - 1 = 0$ then $x = \frac{1}{2}$ $\frac{1}{2}$ and from the first equation $y^2 = -1$ which has no real solutions. Thus the function $G(x, y)$ has only one critical point in \mathbb{R}^2 which is $(0, 0)$.

Now, we apply the second derivative test:

$$
Hes(G)(x,y) = \begin{bmatrix} G_{xx} & G_{xy} \\ G_{yx} & G_{yy} \end{bmatrix}_{x=0,y=0} = \begin{bmatrix} 2 & 2y \\ 2y & 2x - 1 \end{bmatrix}_{x=0,y=0} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}
$$

Since the determinant of the Hessian $D = -2 < 0$ by second derivative test the point $(0, 0)$ is a saddle point i.e. it is neither a local min or max.

Problem 4 Given the system

$$
\begin{array}{rcl}\n\frac{dx}{dt} & = & x + y \\
\frac{dy}{dt} & = & 4x - 2y\n\end{array}
$$

- (a) Solve the system for the particular solution that passes through the point $(x, y) = (1, 0)$.
- (b) Find all equilibrium solutions and determine their stability.
- (c) Draw the solution passing through the point $(x, y) = (1, 0)$ on the direction field for all $t \in \mathbb{R}$. Also draw the solution passing through the point $(x, y) = (1, 1)$ for all $t \in \mathbb{R}$. (Use the Java applet to produce the direction filed)

Solution (a) We rewrite the system in the matrix from

$$
\frac{d\vec{x}}{dt} = A\vec{x} \text{ where } A = \begin{bmatrix} 1 & 1 \\ 4 & -2 \end{bmatrix} \text{ and } \vec{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}
$$

Given this system, we can write the general solutions as follows: If A has two distinct real eigenvalues λ_1, λ_2 and \vec{u}_1, \vec{u}_2 are the corresponding eigenvectors then the general solution to the above system is given by

$$
\vec{x}(t) = c_1 \vec{u}_1 e^{\lambda_1 t} + c_2 \vec{u}_2 e^{\lambda_2 t}.
$$

To find eigenvalues we solve the characteristic equation $det(\lambda I_2$ − $(A) = 0$ which is $\lambda^2 + \lambda - 6 = 0$. Thus, eigenvalues of A are $\lambda_1 = 2$ and $\lambda_2 = -3$. For the eigenvalue $\lambda = 2$ the eigenvector equation $A\vec{u} = 2\vec{u}$ leads to the system $x + y = 2x$ and $4x - 2y = 2y$. Remember these two equations are ALWAYS the same equation when finding the eigenvectors, and any vector \vec{u} that satisfies either equation one works. The first equation leads directly to $x = y$. Choose $x = 1$, so that $y = 1$, and an eigenvector for $\lambda_1 = 2$ is $\vec{u}_1 =$ $\lceil 1 \rceil$ 1 1 . If we do the same thing for $\lambda_2 = -3$, we will get the equation $x + y = -3x$, and if we choose $x = 1$, we get $y = -4$, and for $\lambda_2 = -3$, we get $\vec{u}_2 =$ $\begin{bmatrix} 1 \end{bmatrix}$ −4 1 . Hence the general solution to this system is

$$
\vec{x}(t) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 1 \\ -4 \end{bmatrix} e^{-3t}
$$

For our particular solution, we have a starting point $\vec{x}(0) = \begin{bmatrix} 1 \ 0 \end{bmatrix}$ 0 1 . Throw that into the general solution evaluated at $t = 0$, to get the values of the two unknown constants c_1 and c_2 that correspond to the solution that passes through the point $(1, 0)$. Hence,

$$
\left[\begin{array}{c}1\\0\end{array}\right]=c_1\left[\begin{array}{c}1\\1\end{array}\right]+c_2\left[\begin{array}{c}1\\-4\end{array}\right]
$$

This leads to the two equations $1 = c_1 + c_2$ and $0 = c_1 - 4c_2$. Solving these two leads to $c_1 = \frac{4}{5}$ $\frac{4}{5}$ and $c_2 = \frac{1}{5}$ $\frac{1}{5}$. Hence our particular solution is

(b) The only equilibrium of a linear system where the matrix A has non-zero determinant (like this one) is the origin. And since the two eigenvalues here are real, distinct, non-zero, and of different signs. Thus, the origin is a saddle and unstable.

(c) On the next page, the solution passing through the point $(x, y) = (1, 0)$ is drawn on the direction field for all $t \in \mathbb{R}$. The solution passing through the point $(x, y) = (1, 1)$ is also drawn. Note that these two points are marked.

