Math 107 Practice Exam 2

1a.

$$y = \frac{1}{3}(x^2 + 2)^{\frac{3}{2}}, \ y' = x\sqrt{x^2 + 2}, \ 1 + (y')^2 = 1 + x^2(x^2 + 2) = (x^2 + 1)^2.$$
$$L = \int_0^1 \sqrt{1 + (y')^2} \ dx = \int_0^1 (x^2 + 1) \ dx = (\frac{1}{3}x^3 + x)|_0^1 = \frac{4}{3}.$$

b. Revolve $y = \frac{1}{3}x^3$ about the x axis from x = 0 to x = 1.

$$S = 2\pi \int_0^1 \frac{1}{3} x^3 \sqrt{1 + x^4} \, dx = \frac{1}{6} \pi (1 + x^4)^{\frac{3}{2}} \Big|_0^1 = \frac{\pi}{6} [2^{\frac{3}{2}} - 1] \, .$$

- 2. Let $p(x) = c\sqrt{x}$ on [0, 1].
- a. p(x) is a probability disribution if

$$\int_0^1 p(x) \, dx = c \int_0^1 \sqrt{x} \, dx = c \cdot \frac{2}{3} = 1$$

Hence $c=\frac{3}{2}$ and $p(x)=\frac{3}{2}\sqrt{x}$. Also note that the cumulative distribution function F(x is given by

$$F(x) = \int_0^x p(t) dt = x^{\frac{3}{2}}$$
.

b. The mean μ of the distribution is given by

$$\mu = \int_0^1 x p(x) \, dx = \frac{3}{2} \int_0^1 x^{\frac{3}{2}} = \frac{3}{2} \cdot \frac{2}{5} = \frac{3}{5} \, .$$

c. The median m of the distribution is the that value where the probability of being less than m is $\frac{1}{2}$ (i.e. the cumulative distribution function satisfies $F(m) = \frac{1}{2}$) which is the same as saying that the area under the graph of p(x)from 0 to m is $\frac{1}{2}$. That is,

$$F(m) = m^{\frac{3}{2}} = \frac{1}{2}$$
 so $m = 2^{-\frac{2}{3}}$.

3.

$$\int_{e}^{\infty} \frac{dx}{x(\ln x)^2} = \lim_{L \to \infty} \int_{e}^{L} \frac{dx}{x(\ln x)^2}$$
$$= \lim_{L \to \infty} \int_{e}^{L} [-\frac{1}{\ln x}]_{0}^{L}$$
$$= \lim_{L \to \infty} [1 - \frac{1}{\ln L}] = 1$$

where we have performed the integration via the substitution $u = \ln x$.

4a. The trapezoid rule says that as $n \to \infty$, $\int_a^b f(x) dx \approx T_n$ where

$$T_n = \frac{(b-a)}{2n} [y_0 + 2y_1 + 2y_2 + \dots 2y_{n-1} + y_n]$$

where the partition points $x_i = a + i \frac{(b-a)}{n}$, i = 0, 1, ..., n and $y_i = f(x_i)$.

b. $\ln 2 = \int_1^2 \frac{1}{x} dx$ so we take $f(x) = \frac{1}{x}$, a = 1, b = 2, n = 5.

$$T_5 = (.1)[1/1 + 2(1/1.2) + 2(1/1.4) + 2(1/1.6) + 2(1/1.8) + 1/2] = 0.695$$

5. We use the exponential distribution with k = .05; that is, $p(x) = 0.05e^{-.05x}$. As computed in my notes.

$$\mu = \int_0^\infty 0.05x e^{-.05x} \, dx = 1/.05 = 20$$

Hence the average lifespan is 20 years.

6. We use the normal distribution with $\mu = 30,000$ and standard deviation $\sigma = 2000$.

a.We need to compute the probability P(25000 < X < 28000) (X=lifespan) by converting to the standard normal $Z = \frac{X-30,000}{2000}$. Since $\frac{25000-30000}{2000} = -\frac{5}{2} = -2.5$ and $\frac{28000-30000}{2000} = -1$ we need the area under the standard normal from Z = -2.5 to Z = -1. Since the given Z-table gives the area from 0 to Z, by the symmetry of the normal distribution, it is equivalent to find the area from Z = 1 to Z = 2.5. This is 0.4938-0.3413=0.1525. So the percentage is 15.25%.

b.To find the probability that X > 36000 we convert this to $Z > \frac{36000-30000}{2000} =$ 3. Looking in the table we see that the probability (area) is 0.5-0.4987=0.0013

Ζ	Area from 0 to Z
0	0.0000
0.5	0.1915
1.0	0.3413
1.5	0.4332
2.0	0.4772
2.5	0.4938
3	0.4987