
FINAL PRACTICE EXAM II

YI LI

1. Let f(x, y) = x+ y with constraint function

1

x
+

1

y
= 1, x 6= 0, y 6= 0.

Using Lagrange multipliers to find all local extrema. Are these global extrema?

Let g(x, y) = 1
x + 1

y − 1. From

∇f(x, y) =

[
1
1

]
, ∇g(x, y) =

[−1
x2

−1
y2

]
we have

1 = − λ

x2
, 1 = − λ

y2
,

1

x
+

1

y
= 1, x 6= 0, y 6= 0.

Thus y = x or y = −x. In the second case, we obtain 1 = 1
x + 1

−x = 0, a

contradiction. Hence y = x and 1 = 1
x + 1

x = 2
x . Consequently, x = y = 2. There

is only one local extrema (2, 2) with f(2, 2) = 4.
It is clear to see that this local extrema (0, 0 is not global, since

lim
x→1±

f(x, y) = lim
x→1±

(
x+

x

x− 1

)
= lim

x→1±

x2

x− 1
= ±∞.

2. Consider the system of linear equations

−2x+ 4y − z = −1
x+ 7y + 2z = −4
3x− 2y + 3z = −3

Find the augmented matrix of the above system and use it to solve the system.

The augmented matrix is  −2 4 −1 −1
1 7 2 −4
3 −2 3 −3


Then

R1

R2

R3

 −2 4 −1 −1
1 7 2 −4
3 −2 3 −3

 R1+2R2−−−−−−→
R1+

2
3R3

R4

R5

R6

 −2 4 −1 −1
0 18 3 −9
0 8

3 1 −3


R5− 27

4 R6−−−−−−→
R7

R8

R9

 −2 4 −1 −1
0 18 3 −9
0 0 −15

4
45
4


1
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Therefore, z = −3, y = 0, and x = 2.

3. Let

f(x, y) =

{ 4xy
x2+y2 , if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

(a) Does the lim(x,y)→(0,0) f(x, y) exist?
(b) Is f(x, y) continuous at (0, 0)?

(a) Along the line c : y = mx, we have

lim
(x,y)→(0,0) along with C

f(x, y) = lim
x→0

4mx2

x2 +m2x2
=

4m

1 +m2
.

Choosing different m yields different limits, we conclude that the limit does not
exist.

(b) By part (a), f is discontinuous at (0, 0).

4. Determine whether ∫ ∞
−∞

1

x2 − 1
dx

is convergent.

Consider the function f(x) = 1
x2−1 . This function becomes infinity at x = ±1.

Write the improper integral as∫ ∞
−∞

dx

x2 − 1
=

∫ −1
−∞

dx

x2 − 1
+

∫ 1

−1

dx

x2 − 1
+

∫ ∞
1

dx

x2 − 1
.

Since ∫
dx

x2 − 1
=

∫
1

2

(
1

x− 1
− 1

x+ 1

)
dx =

1

2
ln

∣∣∣∣x− 1

x+ 1

∣∣∣∣ ,
it follows that

lim
x→−1

1

2
ln

∣∣∣∣x− 1

x+ 1

∣∣∣∣ = +∞, lim
x→1

1

2
ln

∣∣∣∣x− 1

x+ 1

∣∣∣∣ = −∞.

Hence the improper integral is divergent.

5. Find the absolute maxima and minima of f(x, y) = x2 + y2 + x + 2y on the
disk D = {(x, y) ∈ R2 : x2 + y2 ≤ 4}.

The gradient is

∇f(x, y) =

[
2x+ 1
2y + 2

]
The critical point inside of D is (−1/2,−1). The Hessian matrix of f is

Hess(f)(x, y) =

[
2 0
0 2

]
which implies that f has a local minimum f(−1/2,−1) = −5/4 at the point
−(−1/2,−1).
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We next consider the boundary of D. Let g(x, y) = x2 + y2− 4. Then we should
consider the extrema problem with constraint:

f(x, y) = x2 + y2 + x+ 2y with g(x, y) = 0.

From the equation ∇f(x, y) = λ∇g(x, y), we see that if f(x, y) has an extremum
at (x0, y0) then

2x+ 1 = 2λx, 2y + 2 = 2λy, x2 + y2 = 4.

The first two equations gives us x = 1/(2λ − 2) and y = 2/(2λ − 2); substituting
them into the third one, we arrive at

1

(2λ− 2)2
+

4

(2λ− 2)2
= 4 =⇒ λ = 1 +

√
5

4
.

Hence x = 1/
√

5 and y = 4/
√

5, with f(2/
√

5, 4/
√

5) = 4 + 2
√

5.

The absolute maxima is 4 + 2
√

5 and the absolute minima is −5/4.

6. Use the partial-fraction method to solve

dy

dt
=

1

2
y2 − 2y

with y(0) = −3.

Compute
1

2
dt =

dy

y(y − 4)
=

1

4

(
1

y − 4
− 1

y

)
dy.

Hence
1

4
ln

∣∣∣∣y − 4

y

∣∣∣∣ =
1

2
x+ C1 =⇒ y − 4

y
= Ce2x.

Since y(0) = −3, we get C = 7/3 and then y = 4/(1− 7
3e

2x).

7. Find and classify the critical points of

f(x, y) = x3 − 4xy + y, (x, y) ∈ R2.

Compute

∇f(x, y) =

[
3x2 − 4y
−4x+ 1

]
, Hess(f)(x, y) =

[
6x −4
−4 0

]
The only critical point is (1/4, 3/64). Since detHess(f)(x, y) = −16 < 0 for any
points (x, y), it follows that (1/4, 3/64) is a saddle point.

8. Compute the directional derivative of f(x, y) = yex
2

at (0, 2) in the direction[
4
−1

]
.

The gradient of f is

∇f(x, y) =

[
2xyex

2

ex
2

]
=⇒ ∇f(0, 2) =

[
0
1

]
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The normalization of

[
4
−1

]
is given by

u =
1∣∣∣∣[ 4
−1

]∣∣∣∣
[

4
−1

]
=

1√
17

[
4
−1

]

Then Duf(0, 2) = ∇f(0, 2) · u = −1/
√

17.

9. Consider the following system of differential equations[
dx1

dt
dx2

dt

]
=

[
1 0
0 1

] [
x1(t)
x2(t)

]
(a) Show that

A =

[
1 0
0 1

]
has the repeated eigenvalues λ1 = λ2 = 1.

(b) Show that

[
1
0

]
and

[
0
1

]
are eigenvectors of A and that any vector

[
c1
c2

]
can

be written as [
c1
c2

]
= c1

[
1
0

]
+ c2

[
0
1

]
(c) Show that

x(t) = c1e
t

[
1
0

]
+ c2e

t

[
0
1

]
is a solution of the above system that satisfies the initial condition x1(0) = c1 and
x2(0) = c2.

(a) detA = 1 and trA = 2. Hence

0 = λ2 − 2λ+ 1 =⇒ λ1 = λ2 = 1.

(b) Since

(A− I2)

[
1
0

]
= 0 = (A− I2)

[
0
1

]
we verify the first part. The second part is obvious.

(c) By (b), we can rewrite x(t) as

x(t) = et
[
c1
c2

]
then x1(0) = c1 and x2(0) = c2. Since any linear combination of two solutions is
also a solution, x(t) satisfies the above system.

10. Suppose that
dy

dx
= (4− y)(5− y).

(a) Find the equilibria of this differential equation.
(b) Compute the eigenvalues associated with each equilibrium and discuss the

stability of the equilibria.
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Let g(y) = (4− y)(5− y) = y2 − 9y + 20. Then g′(y) = 2y − 9.
(a) Two equilibria are y = 4 and y = 5.
(b) Since g′(4) = −1 < 0 and g′(5) = 1 > 0, it follows that the equilibrium 4 is

locally stable while 5 is unstable.
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