
FINAL PRACTICE EXAM I (SOLUTION)

YI LI

1. Determine if the following improper integral converges or diverges. If the
integral is convergent compute its value.∫ ∞

0

xe−x dx.

By integration by parts, we have∫ ∞
0

xe−x dx = −
∫ ∞
0

x d
(
e−x

)
= −

(
xe−x

∣∣∣∣∞
0

−
∫ ∞
0

e−x dx

)
= −

(
0−

∫ ∞
0

e−x dx

)
=

∫ ∞
0

e−x dx

= −e−x
∣∣∣∣∞
0

= −(0− 1) = 1.

2. Let

f(x, y) =

{
3x2y2

x3+y6 , if (x, y) 6= (0, 0),

0, if (x, y) = (0, 0).

(a) Does the lim(x,y)→(0,0) f(x, y) exist?
(b) Is f(x, y) continuous at (0, 0)?

(a) For the line C1 : y = mx, we have

lim
(x,y)→(0,0) along with C1

f(x, y) = lim
x→0

f(x,mx) = lim
x→0

3m2x4

x3 +m6x6

= lim
x→0

3m2x

1 +m6x3
= 0.

For the line C2 : x = y2, we have

lim
(x,y)→(0,0) along with C2

f(x, y) = lim
y→0

f(y2, y) = lim
y→∞

3y6

2y6
=

3

2
.

Hence, the limit lim(x,y)→(0,0) f(x, y) does not exist.
(b) By part (a), it immediately follows that f(x, y) is discontinuous at (0, 0).

3. Solve the following first order separable initial value problem

dy

dx
= (y − 1)(y − 2)

with y(0) = 0.
1
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Write the differential equation as

dy

(y − 1)(y − 2)
= dx.

The rational function 1/(y − 1)(y − 2) has the following partial fraction:

1

(y − 1)(y − 2)
=

A

y − 1
+

B

y − 2

for some constants A and B. Since

A

y − 1
+

B

y − 2
=
A(y − 2) +B(y − 1)

(y − 1)(y − 2)
=

(A+B)y − (2A+B)

(y − 1)(y − 2)

it follows that
A+B = 0, 2A+B = −1.

Solving the above two linear equations yields A = −1 and B = 1. Hence

1

(y − 1)(y − 2)
=
−1

y − 1
+

1

y − 2
=

1

y − 2
− 1

y − 1
.

Plugging this decomposition into above, we arrive at(
1

y − 2
− 1

y − 1

)
dy = dx =⇒ ln

∣∣∣∣y − 2

y − 1

∣∣∣∣ = x+ C1

for some constant. Thus
y − 2

y − 1
= Cex (C = ±eC1) =⇒ y =

2− Cex

1− Cex
.

Using y(0) = 0, we get 0 = 2−C
1−C and then C = 2. Hence

y =
2− 2ex

1− 2ex
.

4. Consider the system of linear equations

x1 − x2 = 0
3x1 + x2 − x3 = 11
2x1 + x2 + 2x3 = 11

Find the augmented matrix of the above system and use it to solve the system.

The augmented matrix is  1 −1 0 0
3 1 −1 11
2 1 2 11


Then

R1

R2

R3

 1 −1 0 0
3 1 −1 11
2 1 2 11

 −3R1+R2−−−−−−→
−2R1+R3

R4

R5

R6

 1 −1 0 0
0 4 −1 11
0 3 2 11


− 3

4R5+R6−−−−−−−→
R7

R8

R9

 1 −1 0 0
0 4 −1 11
0 0 11

4
11
4


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Therefore, z = 1, y = 3, and x = 3.

5. Consider f(x, y) = 3xy − x3 − y3.
(a) Locate all critical points of f(x, y).
(b) Classify the critical points of f(x, y) (i.e., determine if they are local maxi-

mum/local minimum or saddle point).
(c) Does f have a global maximum or minimum on R2? Briefly explain!

Since f(x, y) is differentiable at any points of R2, all critical points must satisfy[
0
0

]
= ∇f(x, y) =

[
3y − 3x2

3x− 3y2

]
(a) If (x0, y0) is a critical point, then

y0 − x20 = 0, x0 − y20 = 0.

Thus (x0, y0) = (0, 0) or (1, 1).
(b) The Hessian matrix of f is

Hess(f)(x, y) =

[
−6x 3

3 −6y

]
For (0, 0), its Hessian matrix has the form

H = Hess(f)(0, 0) =

[
0 3
3 0

]
, detH = −9 < 0;

this critical point is a saddle point.
For (1, 1), its Hessian matrix has the form

H = Hess(f)(1, 1) =

[
−6 3
3 −6

]
, detH = 27 > 0, trH = −12 < 0;

the function f(x, y) has a local maximum at this critical point.
(c) Consider a line y = ax. Then

f(x, y) = f(x, ax) = 3ax2 − x3 − a3x3.
Choose a = 0, we have

f(x, 0) = −x3 → −∞ as x→∞
and

f(x, 0) = −x3 → +∞ as x→ −∞.
This means that f has no global extrema.

6. Consider the following system of differential equations[
dx1

dt
dx2

dt

]
=

[
−5 −2
6 3

] [
x1(t)
x2(t)

]
Solve the following initial value problem with x1(0) = 5 and x2(0) = 3.

Let

A =

[
−5 −2
6 3

]
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From detA = −3 and trA = −2, we get

0 = λ2 − λtrA+ detA = λ2 + 2λ− 3 = (λ+ 3)(λ− 1).

The two eigenvalues are λ1 = 1 and λ2 = −3.
If u is an eigenvector of λ1, then

0 = (A− λ1I2)u =

([
−5 −2
6 3

]
−
[
1 0
0 1

])[
u1
u2

]
=

[
−6 −2
6 2

] [
u1
u2

]
and u2 = −3u1. Hence

u =

[
u1
u2

]
=

[
u1
−3u1

]
= u1

[
1
−3

]
.

If v is an eigenvector of λ2, then

0 = (A− λ1I2)u =

([
−5 −2
6 3

]
+ 3

[
1 0
0 1

])[
v1
v2

]
=

[
−2 −2
6 6

] [
v1
v2

]
and v2 = −v1. Hence

v =

[
v1
v2

]
=

[
v1
−v1

]
= v1

[
1
−1

]
.

The general solution now is given by

x(t) = c1e
t

[
1
−3

]
+ c2e

−3t
[

1
−1

]
=

[
c1e

t + c2e
−3t

−3c1e
t − c2e−3t

]
.

From x1(0) = 5 and x2(0) = 3, we find that

c1 + c2 = 5, −3c1 − c2 = 3.

Solving those linear equations gives us c1 = −4 and c2 = 9. Consequently

x(t) =

[
−4et + 9e−3t

12et − 9e−3t

]
.

7. Find the absolute maxima and minima of f(x, y) = x2 + y2 − 2x + 4 on the
disk D = {(x, y) ∈ R2 : x2 + y2 ≤ 4}.

Compute

∇f(x, y) =

[
2x− 2

2y

]
, Hess(f)(x, y) =

[
2 0
0 2

]
so that the function f(x, y) has the only critical point (1, 0) inside of D. and f has
a local minimum f(1, 0) = 3 at this point.

Any point of the boundary of D can be written, in terms of polar coordinates,
as

x = 2 cos θ, y = 2 sin θ, θ ∈ [0, 2π).

Hence

f(x, y) = f(2 cos θ, 2 sin θ) = 4− 4 cos θ + 4 = 4(2− cos θ), θ ∈ [0, 2π),

on the boundary ∂D. When cos θ = 1 (or θ = 0), f has the minimum 4, thus f has
the minimum 4 at the point (2, 0); when cos θ = −1 (or θ = π), f has the maximum
12, thus f has the maximum 12 at the point (−2, 0).

Therefore the absolute maxima and minima are 12 and 3 respectively.
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8. Let f(x, y) =
√

4x2 + y2 be a function of two variables.
(a) Compute the directional derivative of the function f(x, y) at the point (−2, 4)

in the direction of v =

[
−3
−1

]
.

(b) Find the angle between the vectors ∇f(−2, 4) and v.

The gradient vector of f is

∇f(x, y) =

 4x√
4x2+y2

y√
4x2+y2


(a) The gradient of f at (−2, 4) is

∇f(−2, 4) =

[
−8
4
√
2

4
4
√
2

]
=

[
−2√
2
1√
2

]

The normalization of

[
−3
−1

]
is

u =
1∣∣∣∣[−3
−1

]∣∣∣∣
[
−3
−1

]
=

1√
10

[
−3
−1

]

so that the directional derivative is equal to

Duf(−2.4) = ∇f(−2.4) · u =

[
−2√
2
1√
2

]
· 1√

10

[
−3
−1

]
=

8√
20

=
4√
5
.

(b) Let w = ∇f(−2, 4). Recall the formula

cos θ =
w · v
|w||v|

where θ is the angle between w and v. The length of w is

|w| =
√

4

2
+

1

2
=

√
5√
2
.

Hence

cos θ =

6√
2
− 1√

2√
5√
2

√
10

=
1√
2

=

√
2

2
.

Thus the angel is 45◦.

9. Suppose you wish to enclose a rectangle plot. You have 1600 ft of fencing.
Using the material, what are the dimensions of the plot that will have the largest
area?

We wish to maximize
A = xy

subject to the constraint 2x+ 2y = 1600. Consider

f(x, y) = xy, g(x, y) = 2x+ 2y − 1600 = 0.
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From

∇f(x, y) =

[
y
x

]
, ∇g(x, y) =

[
2
2

]
and the equation ∇f(x, y) = λ∇g(x, y), we have

y = 2λ, x = 2λ, x+ y = 800,

from which we get λ = 200 and x = y = 400, with f(400, 400) = 160, 000.
We now look at the boundary. By the physical reason, x, y > 0, so that we need

only to consider the line segment x + y = 800 with 0 < x < 800. On this line
segment, we have

f(x, y) = f(x, 800− x) = x(800− x) = −x2 + 800x, 0 < x < 800.

The maximum value takes at (400, 400). Consequently, the largest area is
f(400, 400) = 160, 000.

10. Suppose that
dy

dx
= y(2− y).

(a) Find the equilibria of this differential equation.
(b) Compute the eigenvalues associated with each equilibrium and discuss the

stability of the equilibria.

Let g(y) = y(2− y). Then g′(y) = 2− 2y.
(a) The equilibria are y = 0 and y = 2.
(b) Since g′(0) = 2 > 0 and g′(2) = −2, the equilibrium 0 is unstable while 2 is

locally stable.
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