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Question 1. [15 points] Let A =

[
1 5
3 3

]
. Do the following:

(a) Find detA and calculate A−1.

Solution: Remember the determinant of a 2× 2 matrix is the product of the main diagonal minus the
product of the “other” diagonal. In this case,

detA = 1 · 3− 3 · 5 = 3− 15 = −12.

The inverse has a form also. One switches the main diagonal elements, multiplies the “other” diagonal
elements by −1, and then divides by the determinant. Here, we get

A−1 =
1

detA

[
3 −5

−3 1

]
=

[
− 3

12
5
12

3
12

− 1
12

]
.

(b) Calculate the eigenvalues and corresponding eigenvectors of A

Solution: The eigenvalues are the constants λ in the eigenvalue/eigenvector equation Ax⃗ = λx⃗. One
can manipulate this equation into the form (A− λI2) x⃗ = 0. What is in the parentheses here is a
matrix, and since we are looking for non-trivial solutions x⃗ in this last equation, it will mean that
the determinant of what is in the parentheses will have to be 0. This leads to the new equation
det (A− λI2) = 0, and is called the characteristic equation of A. It’s solutions λ are the eigenvalues of
A. Here

0 = det (A− λI2) = det

([
1 5
3 3

]
− λ

[
1 0
0 1

])
= det

([
1− λ 5
3 3− λ

])
= (1− λ)(3− λ)− 15 = λ2 − 4λ− 12.

Since this last equation factors to (λ− 6)(λ+ 2) = 0, the two solutions (the two eigenvalues of A) are
λ = 6 and λ = −2. For the eigenvectors for each λ, plug in the value for λ into the original equation
Ax⃗ = λx⃗, and solve for the unknown vector. For example, for λ = 6, we get Ax⃗ = 6x⃗, which leads to
the system

x+ 5y = 6x

3x+ 3y = 6y.

This system will have tons of solutions (the eigenvector equation always does since any multiple of an

eigenvector is also an eigenvector). So to solve, simply take either of the two equations and find values

of x and y that work: Here 3x + 3y = 6y reduces to 3x − 3y = 0 which is solved by any pair x and y

when x = y. So choose x = 1. Then y = 1 and an eigenvector for λ = 6 if x⃗ =

[
1
1

]
. For λ = −2, we

will get a system with the equation x+ 5y = −2x, which reduces to 3x = −5y. Choose x = 5, y = −3,

and an eigenvector for λ = −2 is x⃗ =

[
5

−3

]
.

(c) Solve the matrix question Ax⃗ = b⃗, where x⃗ =

[
x1

x2

]
and b⃗ =

[
4
12

]
.

Solution: One way to do this is to write out the system as equation and solve: Ax⃗ = b⃗ is

x+ 5y = 4

3x+ 3y = 12.

Remember, add (−3) times the first equation to the second to create a new equation in only y? This

leads to the solution x = 4, y = 0, or x⃗ =

[
4
0

]
.
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Question 2. [20 points] Each of the two definite integrals below is improper. Choose ONLY ONE
of them. For this choice, either show that the integral does not exist, or calculate its value:

(a)

∫ π
2

0

sinx√
cosx

dx.

Solution: This integral is improper since the integrand has a vertical asymptote at the upper limit.
Hence we correct this with the limit:∫ π

2

0

sinx√
cosx

dx = lim
b→π

2
−

∫ b

0

sinx√
cosx

dx.

The latter integrand is a regular definite integral and the integrand is continuous on the entire closed
interval between the limits. To solve, a simple substitution is useful. Choose u = cosx, so that
du = −sinx dx. Neglecting the limits for a minute, the antiderivative of the integrand is∫

sinx√
cosx

dx =

∫
−1√
u
du = −2

√
u+ C = −2

√
cosx+ C.

Hence∫ π
2

0

sinx√
cosx

dx = lim
b→π

2
−

∫ b

0

sinx√
cosx

dx

= lim
b→π

2
−

(
−2

√
cosx

) ∣∣∣b
0
= lim

b→π
2

−

(
−2

√
cos b+ 2

√
cos 0

)
= 0 + 2 = 2.

(b)

∫ 1

−1

1
3
√
x
dx.

Solution: The problem here is not that the integrand is ill-defined at one of the limits. It is that the
integrand has a vertical asymptote in the middle of the interval of integration; at x = 0. hence this
integral is also improper for this reason. Really, properly written,∫ 1

−1

1
3
√
x

dx = lim
b→0−

∫ b

−1

1
3
√
x

dx+ lim
a→0+

∫ 1

a

1
3
√
x

dx.

Inside the limits, the integrals are now fine. One can notice that the integrand is an odd function
f(−x) = −f(x), and thus is rotationally symmetric. This is not necessary, really, but it does mean
that the two integrals on the right will be the same up to sign. This means that either they both exist
or they don’t. We will solve only one of them here: we get

lim
b→0−

∫ b

−1

1
3
√
x

dx = lim
b→0−

∫ b

−1

x− 1
3 dx = lim

b→0−

(
x

2
3

) ∣∣∣b
−1

= lim
b→0−

b
2
3 − (−1)

2
3 = 0− 1 = −1.

Since this one exists, the other one will also and be of the other sign. Hence we will get∫ 1

−1

1
3
√
x

dx = lim
b→0−

∫ b

−1

1
3
√
x

dx+ lim
a→0+

∫ 1

a

1
3
√
x

dx = (−1) + 1 = 0.
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Question 3. [20 points] Solve the first-order, separable initial value problem defined for t ≥ 0
given by

dy

dt
= ty2 − y2 sin t, y(0) =

1

2
.

Solution: First, the right-hand-side can be rewritten ty2 − y2 sin t = (t− sin t) y2. Thus the expression is
“separable” into factors, each of which is not an expression involving the other variable. Then the differential
equation can be written as

1

y2

dy

dt
= (t− sin t) , or in differential notation

1

y2
dy = (t− sin t) dt.

This last one is the form most likely seen in books. Solving is simply integrating at this point, and in the
latter form, one simply integrates with respect to each variable on each side:∫

1

y2
dy =

∫
(t− sin t) dt

−1

y
=

t2

2
+ cos t+ C.

Recall that the constant is necessary at this point since we have produced antiderivatives of each side, and
whenever two function are equal, their respective antiderivatives are ONLY equal up to some constant!
Really, as this stands, this IS the solution, written with y as an implicit function of t. This becomes the
general solution to the differential equation. At this point, one needs only to find the value of C that
corresponds to the initial data y(0) = 1

2
. We get

− 1
1
2

= −2 =
02

2
+ cos 0 + C = 1 + C,

and we find that C = −3. But it “feels” better to actually first solve for y explicitly as a function of t first
and then solve for the constant C. Done this way, we get the general solution is

y(t) =
−1

t2

2
+ cos t+ C

.

Then

y(0) =
1

2
=

−1
02

2
+ cos 0 + C

means −2 = 1 + C, or C = −3. The particular solution here is

y(t) =
−1

t2

2
+ cos t− 3

.
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Question 4. [15 points] Let
dy

dx
= y(y2 − 1)(6− y)

be a first-order autonomous differential equation. WITHOUT solving this differential equation, do
the following:

(a) Find and classify the stability of all equilibrium solutions.

Solution: First, the warning NOT to try to solve the differential equation is one to heed. It is doable
(by a partial fraction decomposition of the integrand) but not needed and quite tedious. Rather, since
the differential equation is autonomous, look for all places where the derivative is 0. These are the
equilibria. Here solve y(y2−1)(6−y) = 0, which leads immediately to y = 0, y = −1, y = 1, and y = 6.
Hence the equilibria solutions are y(t) ≡ 0, y(t) ≡ ±1, and y(t) ≡ 6. Note that the solution y(t) ≡ −1
is often missed.
To classify, simply look to see how all solution behave on each side of each equilibrium. This is done
really by noticing that for each interval of the variable y whose endpoints are equilibria, the sign of the
expression f(y) = y(y2 − 1)(6 − y) does not change. This means that for any starting value y(0) of a

solution, the derivative
dy

dx
will not change sign forever. And since solutions cannot cross, every solution

that starts in any interval bounded by equilibria must stay in that interval. For example, suppose we
start a solution at y(0) = 1

2
. Then for all time, y(t) will have to stay in the interval (0, 1), since both

y = 0 and y = 1 are equilibria. Furthermore, on this interval f
(
1
2

)
< 0. Hence here the solution y(t)

will tend toward the equilibrium solution y(t) ≡ 0 as t goes to infinity. This means that the equilibrium
solution y(t) ≡ 0 is stable on this side. Playing this through on each side of each equilibrium, we find
that y(t) ≡ 0 and y(t) ≡ 6 are stable, and y(t) ≡ −1 and y(t) ≡ 1 are unstable.

(b) Discuss the long term behavior of the solution to this differential equation that satisfies the
initial value y(0) = 3. (That is, for the solution to this differential equation that satisfies
y(0) = 3, what is lim

x→∞
y(x).)

Solution: Based on the above discussion, this part becomes easy. Since the equilibria y(t) ≡ 1, is
unstable, and y(t) ≡ 6 is stable, and since there are no other equilibria on the interval (1, 6), ANY
solution that starts in this interval will stay in this interval and tend toward the stable equilibrium
y(t) ≡ 6. Since y(0) = 3, we have

lim
t→∞

y(t) = 6.
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Question 5. [15 points] Do the following:

(a) In R2, find the equation of the line perpendicular to the vector

[
1
2

]
that passes through the

point (4, 3).

Solution: The line perpendicular to a point (x0, y0) and perpendicular to a vector

[
a
b

]
is given by

a(x − x0) + b(y − y0) = 0. Recall, that this is the dot product of two vectors, one of which is the
one given and the other is a vector constructed to live on the line. The dot product is 0 to reflect the
perpendicular nature of the vector directions. Here x0 = 4, y0 = 3, a = 1 and b = 2. The final answer
is

(x− 4) + 2(y − 3) = 0.

(b) Parameterize this line via the parameter t. For your parameterization, what are the x and y
values that correspond to the value t = 2.

Solution: Solving your answer above for y as a function of x, you would get y =
1

2
x + 5. One

parameterization easily found is to simply let x = t (this is like letting the x parameter be the line
parameter). Then the parameterization is

x(t) = t

y(t) = −1

2
t+ 5.

it is not insightful, but it is correct, and ANY parameterization works here. Given this parameterization,

then for t = 2, we get x− 2, and y = −1

2
(2) + 5 = 4.

A different way is to use the vector given explicitly, and write a vector parameterization: Let x⃗(t) =[
x(t)
y(t)

]
. Then the parameterization is simply a sum of scaled vectors

x⃗(t) =

[
x(t)
y(t)

]
=

[
4
3

]
+ t

[
1
2

]
.

And for this parameterization, t = 2 on this line has coordinates x(2) = 4 + (2)1 = 6, and y(2) =

3 + (2)2 = 7.
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Question 6. [15 points] Let x⃗ =

[
1
3

]
, and y⃗ =

[
−2
1

]
.

(a) Graph x⃗, y⃗, x⃗+ y⃗ and x⃗− y⃗ on the graph provided.

1

1

x is red

y is blue

x+y is green

x-y is black

(b) Calculate |x⃗| and find the unit vector in the direction of x⃗.

Solution: The length of the vector is simply the distance from its base at the origin to its tip at the
point (1, 3). Hence

|x⃗| = length(x⃗) =
√

12 + 32 =
√
10.

Any vector in the same direction of x⃗ is simply a multiple of x⃗, and if we divide the vector x⃗ by its
length, we get the unit vector in the same direction. Hence

unit vector in the direction of x⃗ =
x⃗

|x⃗| =
1√
10

[
1
3

]
=

[
1√
10
3√
10

]
.

(c) Given A =

[
1 1
1 −1

]
, are the vectors Ax⃗ and y⃗ linearly independent? Explain.

Solution: Here,

Ax⃗ =

[
1 1
1 −1

] [
1
3

]
=

[
4

−2

]
.

Now, two vectors are considered independent if and only if one is not a multiple of the other. Thus y⃗
is independent of Ax⃗ as long as there is not a c ∈ R, where cy⃗ = Ax⃗. But there is: let c = −2. Then

cy⃗ = (−2)

[
−2
1

]
=

[
4

−2

]
= Ax⃗.

Hence y⃗ and Ax⃗ are dependent.


