Exam \#2, November 1, Calculus II (107), Fall, 2013, W. Stephen Wilson

I agree to complete this exam without unauthorized assistance from any person, materials or device.
Name (signature): $\qquad$ Date: $\qquad$
Name (print): $\qquad$
TA Name and section:

NO CALCULATORS, NO PAPERS, SHOW WORK. (46 points total, not counting 2 bonus points)

Write something even if not sure of answer. 1 out of 2 points for anything that might have been on path to correct answer. Must have work to back it up though on exam.

Throughout the exam we will use the function:

$$
f(x, y)=3 x^{2}-y-2 y^{2}
$$

1. (2 points) What is $\frac{\partial f}{\partial x}$ at the point $(1,0)$ ?
2. (2 points) What is $\frac{\partial f}{\partial y}$ at the point $(1,0)$ ?
3. (2 points ) What is the gradient of $f$, i.e. $\nabla f$ ?
4. (2 points ) Compute the slope of $f$ in the positive $x$ direction at the point $(1,0)$.
5. (2 points ) Compute the direction of maximum slope of $f$ at $(1,0)$.
6. (2 points ) Compute the slope of $f$ at $(1,0)$ in the direction it is maximal.
7. (2 points ) (Bonus points, possibly hard question, might want to put it off for now) Give a parametric equation for the tangent line to the graph of $f$ (in 3-space) for $(x, y)=(1,0)$ in the maximal direction. Express your answer with smallest integers, no fractions or radicals.
8. (2 points ) Find the equation (in the form $y=m x+b$ ) for the tangent line to the level curve at $(1,0)$.
9. (2 points ) Find the equation for the tangent plane to $f$ for the point $(1,0)$.
10. (2 points ) Find the one critical point for $f$.
11. (2 points ) What is $f(x, y)$ at the critical point?
12. (2 points ) What is the Hessian of $f(x, y)$ at the critical point?
13. (2 points ) What kind of critical point is the critical point: local maximum, local minimum, or saddle?
14. (2 points ) If $x=-1=y$, and $\frac{d x}{d t}=1=\frac{d y}{d t}$, what is $\frac{d f}{d t}$ ?
15. (2 points ) If $x=e^{t}$ and $y=e^{-t}$, what is $\frac{d f}{d t}$ at the point $(x, y)=(e, 1 / e)$ ?
16. (2 points ) If $A$ is a $2 \times 2$ matrix such that $A u=-u$ and $A v=-2 v$ for $u$ and $v$ non-zero vectors, what is the general solution for the system of differential equations: $\binom{d x / d t}{d y / d t}=A\binom{x}{y}$ ?
17. (2 points ) What kind of equilibrium point is $(0,0)$ in the previous problem?
18. (2 points ) In this graph of the direction field for a system of differential equations, what kind of equilibrium point is $(0,0)$ ?

19. (2 points ) In this graph of the direction field for a system of differential equations, what kind of equilibrium point is $(0,0)$ ?

20. (10 points total) Consider the function $f$ on the domain $x^{2}+y^{2} \leq 1$. What is the minimum value $f$ takes ( 2 points) and what point does it take this value ( 2 points)? What is the maximum value $f$ takes ( 2 points) and on what two points does it take this value (4 points, 2 each). (Can use Lagrange multiplier or reduce to Calculus I a couple of different ways.)

More space for problem.

