TEST 2 (04/19/2013, MATH 107, CALCULUS II (BIO))

Name: Section: Score: Score:

In agreeing to take this exam, you are implicitly agreeing to act with fairness and honesty.

1. (10 points) Determine whether the following statements are true (T) or false (F) (You need not give an explanation). (**Each one** is of 2 points)

- (a) If the partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ of a function $f(x, y)$ exist at a point (x_0, y_0) , this function must be differentiable at $(x_0, y_0).$
- (b) If $f(x, y)$ is differentiable at (x_0, y_0) , then f is continuous at (x_0, y_0) .
- (c) Suppose that $f(x, y)$ is a differentiable function. The gradient vector of f at a point (x_0, y_0) is not perpendicular to the level curve through (x_0, y_0) .
- (d) If (x_0, y_0) is a critical point of $f(x, y)$, then f must be differentiable at (x_0, y_0) .
- (e) If $f(x, y)$ and its partial derivatives f_x, f_y, f_{xy} , and f_{yx} are continuous on an open disk centered at the point (x_0, y_0) , then $f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0).$

$$
f(x,y) = \frac{1}{\sqrt{2\pi y}} \exp\left(-\frac{x^2}{2y}\right).
$$

(a) $(2 \text{ points} + 2 \text{ points})$ Find the largest possible domain and corresponding range of f .

(b) (4 points + 4 points) Compute $f_x(x, y)$ and $f_y(x, y)$.

(c) (8 points) Verify $f_y(x, y) = \frac{1}{2} f_{xx}(x, y)$.

Proof. (a) By definition, we must have $y > 0$. Hence the largest possible domain is

$$
D = \{(x, y) \in \mathbf{R}^2 : x \in \mathbf{R} \text{ and } y > 0\}.
$$

Since $-x^2/2y \leq 0$, it follows that $\exp(-x^2/2y) \in (-\infty, 1)$ and then the range of f is $(0, \infty)$.

(b) Compute

$$
f_x(x,y) = \frac{1}{\sqrt{2\pi y}} \frac{\partial}{\partial x} e^{-\frac{x^2}{2y}} = \frac{1}{\sqrt{2\pi y}} \cdot e^{-\frac{x^2}{2y}} \cdot \frac{-2x}{2y}
$$

\n
$$
= \frac{1}{\sqrt{2\pi y}} e^{-\frac{x^2}{2y}} \frac{-x}{y} = -\frac{x}{y\sqrt{2\pi y}} e^{-\frac{x^2}{2y}},
$$

\n
$$
f_y(x,y) = \frac{\partial}{\partial t} ((2\pi y)^{-1/2}) e^{-\frac{x^2}{2y}} + \frac{1}{\sqrt{2\pi y}} e^{-\frac{x^2}{2y}} \frac{x^2}{2y^2}
$$

\n
$$
= \frac{-1}{2} (2\pi y)^{-3/2} 2\pi e^{-\frac{x^2}{2y}} + \frac{x^2}{2y^2 \sqrt{2\pi y}} e^{-\frac{x^2}{2y}}
$$

\n
$$
= \frac{1}{2\sqrt{2\pi y}} e^{-\frac{x^2}{2y}} \left(-\frac{1}{y} + \frac{x^2}{y^2}\right).
$$

(c) From part (b), we have

$$
f_{xx}(x, y) = \frac{\partial}{\partial x} \left(-\frac{x}{y\sqrt{2\pi y}} e^{-\frac{x^2}{2y}} \right)
$$

=
$$
\frac{-1}{y\sqrt{2\pi y}} e^{-\frac{x^2}{2y}} + \frac{-x}{y\sqrt{2\pi y}} e^{-\frac{x^2}{2y}} - \frac{2x}{y}
$$

=
$$
\frac{-1}{y\sqrt{2\pi y}} e^{-\frac{x^2}{2y}} + \frac{x^2}{y^2\sqrt{2\pi y}} e^{-\frac{x^2}{2y}}
$$

=
$$
\frac{1}{\sqrt{2\pi y}} e^{-\frac{x^2}{2y}} \left(-\frac{1}{y} + \frac{x^2}{y^2} \right).
$$

Therefore $f_y(x, y) = \frac{1}{2} f_{xx}(x, y)$.

3. (10 points) Prove that

$$
\lim_{(x,y)\to(0,0)}\frac{xy^4+3x^2y^2}{x^3+2y^6}
$$

does not exist.

Proof. We first consider a line
$$
y = mx
$$
 with $m \neq 0$. Then
\n
$$
\lim_{(x,y)\to(0,0), \text{ along with } y=mx} \frac{xy^4 + 3x^2y^2}{x^3 + 2y^6} = \lim_{x\to 0} \frac{m^4x^5 + 3m^2x^4}{x^3 + 2m^6x^6}
$$
\n
$$
= \lim_{x\to 0} \frac{m^4x^2 + 3m^2x}{1 + 2m^6x^3}
$$
\n
$$
= \frac{0+0}{1+0} = 0.
$$
\nNow we consider a parabola $x = y^2$. Then
\n
$$
\lim_{(x,y)\to(0,0), \text{ along with } x=y^2} \frac{xy^4 + 3x^2y^2}{x^3 + 2y^6} = \lim_{y\to 0} \frac{y^6 + 3y^6}{y^6 + 2y^6}
$$
\n
$$
= \lim_{y\to 0} \frac{4y^6}{3y^6} = \frac{4}{3}.
$$
\nThus the limit does not exist.

$$
f(x, y) = 3xy - x^3 - y^3.
$$

- (a) (10 points) Find all critical points of $f(x, y)$.
- (b) (10 points) Determine the type of each critical point.

Proof. (a) Since $f(x, y)$ is differentiable at any points of \mathbb{R}^2 , it follows that all critical points of $f(x, y)$ must satisfy

$$
\nabla f(x_0, y_0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.
$$

From

$$
f_x(x, y) = 3y - 3x^2
$$
, $f_y(x, y) = 3x - 3y^2$,

we get

$$
y_0 - x_0^2 = 0, \quad x_0 - y_0^2 = 0
$$

for any critical point (x_0, y_0) of f. Hence $(x_0, y_0) = (0, 0)$ or $(1, 1)$.

(b) The Hessian matrix of f at (x_0, y_0) is given by

$$
H = \textbf{Hess}(f)(x_0, y_0) = \begin{bmatrix} -6x & 3\\ 3 & -6y \end{bmatrix}
$$

.

If $(x_0, y_0) = (0, 0)$, then det $H = 0 - 9 = -9 < 0$; so $(0, 0)$ is a saddle point of f .

If $(x_0, y_0) = (1, 1)$, then det $H = 36 - 9 = 27 > 0$ and $f_{xx}(1, 1) = -6$; so $f(x, y)$ has a local maximum at $(1, 1)$.

$$
f(x, y) = y(\cos x)^2 + xe^{x^2 + y}.
$$

(a) (10 points) Compute the directional derivative of $f(x, y)$ at $\left(0,1\right)$ in the direction 3 4 1 .

(b) (10 points) Find a unit vector that is perpendicular to the level curve of $f(x, y)$ at the point $(0, 0)$.

Proof. The gradient of f is

$$
\nabla f(x, y) = \begin{bmatrix} 2y \cos x(-\sin x) + e^{x^2 + y} + x e^{x^2 + y} \cdot 2x \\ (\cos x)^2 + x e^{x^2 + y} \end{bmatrix}
$$

$$
= \begin{bmatrix} -2y \cos x \sin x + (1 + 2x^2)e^{x^2 + y} \\ (\cos x)^2 + x e^{x^2 + y} \end{bmatrix}.
$$

(a) At the point $(0, 1)$ we have

$$
\nabla f(0,1) = \begin{bmatrix} 0 + e^{0+1} \\ 1 + 0 \end{bmatrix} = \begin{bmatrix} e \\ 1 \end{bmatrix}.
$$

the vector $\begin{bmatrix} 3 \\ 5 \end{bmatrix}$ 5 1 is not unit, we normalize it by

$$
\mathbf{u} = \frac{1}{\begin{bmatrix} 3 \\ 4 \end{bmatrix}} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 3/5 \\ 4/5 \end{bmatrix}.
$$

The directional derivative of $f(x, y)$ at $(0, 1)$ in the direction of $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ 4 1 is

$$
D_{\mathbf{u}}f(0,1) = \nabla f(0,1) \cdot \mathbf{u} = \begin{bmatrix} e \\ 1 \end{bmatrix} \cdot \begin{bmatrix} 3/5 \\ 4/5 \end{bmatrix} = \frac{3e+4}{5}.
$$

(b) The gradient of f at $(0, 0)$ is perpendicular to the level curve of $f(x, y)$ at $(0, 0)$, so such a unit vector is

$$
\frac{1}{|\nabla f(0,0)|}\nabla f(0,0) = \frac{1}{\left|\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right|} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}.
$$

 \Box

$$
\mathbf{h}(x,y) = \begin{bmatrix} \frac{x}{\sqrt{x^2 + y^2}} \\ \frac{y}{\sqrt{x^2 + y^2}} \end{bmatrix}
$$

- (a) (10 points) Find the Jacobi matrix of h.
- (b) (10 points) Find a linear approximation of h at $(1, 1)$.

Proof. (a) The Jacobi matrix of h is equal to

$$
D\mathbf{h}(x,y) = \begin{bmatrix} f_x(x,y) & f_y(x,y) \\ g_x(x,y) & g_y(x,y) \end{bmatrix}
$$

where $f(x, y) = \frac{x}{\sqrt{x^2+y^2}}$ and $g(x, y) = \frac{y}{\sqrt{x^2+y^2}}$ $\frac{y}{x^2+y^2}$. Direct computation shows

$$
f_x(x,y) = \frac{y^2}{(x^2 + y^2)^{3/2}}, \quad f_y(x,y) = \frac{-xy}{(x^2 + y^2)^{3/2}},
$$

$$
g_x(x,y) = \frac{-xy}{(x^2 + y^2)^{3/2}}, \quad g_y(x,y) = \frac{x^2}{(x^2 + y^2)^{3/2}}.
$$

Hence

$$
D\mathbf{h}(x,y) = \frac{1}{(x^2 + y^2)^{3/2}} \begin{bmatrix} y^2 & -xy \\ -xy & x^2 \end{bmatrix}.
$$

transposition of **h** at (1, 1) is

(b) The linear approximation

$$
L(x,y) = \mathbf{h}(1,1) + D\mathbf{h}(1,1) \begin{bmatrix} x-1 \\ y-1 \end{bmatrix}
$$

= $\begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} + \frac{1}{2\sqrt{2}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x-1 \\ y-1 \end{bmatrix}$
= $\begin{bmatrix} \frac{2+x-y}{2\sqrt{2}} \\ \frac{2+y-x}{2\sqrt{2}} \end{bmatrix}.$

 \Box