TEST 1 (03/08/2013, MATH 107, CALCULUS II (BIO))

Name:

Section:

Score:

In agreeing to take this exam, you are implicitly agreeing to act with fairness and honesty.

Problems/Points	1/10	2/20	3/10	4/20	5/20	6/20
Scores						

1. (10 points) Consider a 2×2 matrix

$$A = \begin{bmatrix} 4 & 5\\ -1 & -2 \end{bmatrix}$$

(a) Compute tr(A) and det(A).

(b) Find the eigenvalues of A.

Proof. (a) By definition we have tr(A) = 4 + (-2) = 2, $det(A) = 4 \times (-2) - 5 \times (-1) = -8 + 5 = -3.$ (b) Suppose that λ is an eigenvalue of A. Then $\lambda^2 - tr(A)\lambda + det(A) = 0.$ From part (a), we obtain $0 = \lambda^2 - 2\lambda - 3 = (\lambda - 3)(\lambda + 1);$ thus $\lambda = -1$ or $\lambda = 3.$

 $\mathbf{2}$

2. (20 points) Solve the system of linear equations

$$y + x = 3$$

$$z - y = -1$$

$$x + 2z = 4$$

 Proof.

 $\begin{bmatrix} 1 & 1 & 0 & | & 3 \\ 0 & -1 & 1 & | & -1 \\ 1 & 0 & 2 & | & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & | & 3 \\ 0 & -1 & 1 & | & -1 \\ 0 & -1 & 2 & | & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & | & 3 \\ 0 & -1 & 1 & | & -1 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}.$

 Hence z = 2, y = 3, and x = 0.

3. (10 points) Compute the improper integral

$$\int_{1}^{e^4} \frac{dx}{x\sqrt{\ln x}}.$$

Proof. Let $u = \ln x$. Then $du = \frac{dx}{x}$ and

$$\int_{0}^{e^{4}} \frac{dx}{x\sqrt{\ln x}} = \int_{0}^{4} \frac{du}{\sqrt{u}} = \int_{0}^{4} u^{-1/2} du$$
$$= 2u^{1/2} \Big|_{0}^{4} = 2(\sqrt{4} - 0) = 4.$$

4. (20 points) Consider a 2×2 matrix

$$A = \begin{bmatrix} 3 & -2 \\ 7 & -5 \end{bmatrix}$$

(a) Find the inverse matrix A^{-1} and its determinant det (A^{-1}) . (b) Define *a* to be the number det (A^{-1}) . Suppose that the volume V(t) of a cell at time t changes according to

$$\frac{dV}{dt} = \sin(at) \quad \text{with } V(0) = 3.$$

Find V(t).

Proof. (a) det(A) =
$$3 \times (-5) - 7 \times (-2) = -15 + 14 = -1$$
. So

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} -5 & 2\\ -7 & 3 \end{bmatrix} = \begin{bmatrix} 5 & -2\\ 7 & -3 \end{bmatrix}$$

and

$$\det(A^{-1}) = 5 \times (-3) - 7 \times (-2) = -15 + 14 = -1.$$
(b) According to part (a), $a = \det(A^{-1}) = -1$ and
$$V(t) = V(0) + \int_0^t -\sin u \, du = 3 + \int_0^t -\sin u \, du = 3 + \cos u \Big|_0^t = 2 + \cos u$$

5. (20 points) Consider three vectors

$$\mathbf{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \mathbf{z} = \begin{bmatrix} -1 \\ 4 \end{bmatrix}.$$

(a) Compute the dot products a := x ⋅ y and b := x ⋅ z.
(b) Let P = (1, -1) be the point in R² corresponding to the vector **x**. Find the line that passes through this point P and is perpendicular to the vector

$$\mathbf{n} = \begin{bmatrix} a \\ b \end{bmatrix}$$

where a, b are defined in (a).

Proof. (a)

$$a = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 1 \times 2 + (-1) \times 3 = 2 - 3 = -1,$$

$$b = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 4 \end{bmatrix} = 1 \times (-1) + (-1) \times 4 = -1 - 4 = -5.$$
(b) By part (a),

$$\mathbf{n} = \begin{bmatrix} -1 \\ -5 \end{bmatrix}$$
and hence the line is given by

$$0 = \begin{bmatrix} x - 1 \\ y - (-1) \end{bmatrix} \cdot \begin{bmatrix} -1 \\ -5 \end{bmatrix} = (-1) \times (x - 1) + (-5) \times (y + 1) = -x - 5y - 4,$$
namely, $x + 5y + 4 = 0.$

namely, x + 5y + 4 = 0.

6. (20 points) (a) Solve the differential equation

$$\frac{dy}{dx} = (y-2)(y+1), \quad y(0) = 3.$$

(b) Find the equilibria of the above differential equation and discuss the stability of each equilibrium.

Proof. (a) Write $\frac{dy}{(y-2)(y+1)} = dx \Longrightarrow \int \frac{dy}{(y-2)(y+1)} = \int dx.$ Let $\frac{1}{(y-2)(y+1)} = \frac{A}{y-2} + \frac{B}{y+1}$ then $\frac{1}{(y-2)(y+1)} = \frac{(A+B)y + (A-2B)}{(y-2)(y+1)}.$ Consequently, A + B = 0, $A - 2B = 1 \Longrightarrow A = \frac{1}{2}$, $B = -\frac{1}{2}$. Substituting A = 1/3 and B = -1/3 into above implies $\int \frac{1}{3} \left(\frac{1}{y-2} - \frac{1}{y+1} \right) dy = x + C \Longrightarrow \frac{1}{3} \ln \left| \frac{y-2}{y+1} \right| = x + C,$ or $\frac{y-2}{u+1} = C'e^{3x} \Longrightarrow y = \frac{2+C'e^{3x}}{1-C'e^{3x}}.$ Since y(0) = 3, it follows that $3 = \frac{2+C'}{1-C'} \Longrightarrow C' = \frac{1}{4}$ and therefore $y = \frac{8 + e^{3x}}{4 - e^{3x}}.$ (b) Let $q(y) = (y-2)(y+1) = y^2 - y - 2$, then q'(y) = 2y - 1. The equilibria are $\hat{y}_1 = -1$ or $\hat{y}_2 = 2$.

If $\hat{y}_1 = 1$, then $g'(\hat{y}_1) = 2 \times (-1) - 1 = -3 < 0$; if $\hat{y}_2 = 2$, then $g'(\hat{y}_2) = 2 \times 2 - 1 = 3 > 0$. Hence -1 is locally stable and 2 is unstable.