FINAL PRACTICE EXAM II

YI LI

1. Let $f(x, y) = x + y$ with constraint function

$$
\frac{1}{x} + \frac{1}{y} = 1, \quad x \neq 0, \ y \neq 0.
$$

Using Lagrange multipliers to find all local extrema. Are these global extrema?

Let $g(x, y) = \frac{1}{x} + \frac{1}{y} - 1$. From

$$
\nabla f(x,y) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \nabla g(x,y) = \begin{bmatrix} \frac{-1}{x^2} \\ \frac{-1}{y^2} \end{bmatrix}
$$

we have

$$
1=-\frac{\lambda}{x^2}, \quad 1=-\frac{\lambda}{y^2}, \quad \frac{1}{x}+\frac{1}{y}=1, \quad x\neq 0, \ y\neq 0.
$$

Thus $y = x$ or $y = -x$. In the second case, we obtain $1 = \frac{1}{x} + \frac{1}{-x} = 0$, a contradiction. Hence $y = x$ and $1 = \frac{1}{x} + \frac{1}{x} = \frac{2}{x}$. Consequently, $x = y = 2$. There is only one local extrema $(2, 2)$ with $f(2, 2) = 4$.

It is clear to see that this local extrema $(0, 0$ is not global, since

$$
\lim_{x \to 1^{\pm}} f(x, y) = \lim_{x \to 1^{\pm}} \left(x + \frac{x}{x - 1} \right) = \lim_{x \to 1^{\pm}} \frac{x^2}{x - 1} = \pm \infty.
$$

2. Consider the system of linear equations

 \lceil \mathbf{I}

$$
-2x + 4y - z = -1
$$

$$
x + 7y + 2z = -4
$$

$$
3x - 2y + 3z = -3
$$

 $-2 \t 4 \t -1 \t -1$ $1 \quad 7 \quad 2 \mid -4$ $3 -2 3 -3$ 1 T

Find the augmented matrix of the above system and use it to solve the system.

The augmented matrix is

Then

R¹ R² R³ −2 4 −1 −1 1 7 2 −4 3 −2 3 −3 ^R1+2R² −−−−−−→ R1+ ² ³ R³ R⁴ R⁵ R⁶ −2 4 −1 −1 0 18 3 −9 0 8 3 1 −3 R5− ²⁷ ⁴ R⁶ −−−−−−→ R⁷ R⁸ R⁹ −2 4 −1 −1 0 18 3 −9 0 0 [−]¹⁵ 4 45 4

Therefore, $z = -3$, $y = 0$, and $x = 2$.

3. Let

$$
f(x,y) = \begin{cases} \frac{4xy}{x^2+y^2}, & \text{if } (x,y) \neq (0,0), \\ 0, & \text{if } (x,y) = (0,0). \end{cases}
$$

(a) Does the $\lim_{(x,y)\to(0,0)} f(x,y)$ exist?

(b) Is $f(x, y)$ continuous at $(0, 0)$?

(a) Along the line $c : y = mx$, we have

$$
\lim_{(x,y)\to(0,0)} \lim_{\text{along with } C} f(x,y) = \lim_{x\to 0} \frac{4mx^2}{x^2 + m^2x^2} = \frac{4m}{1+m^2}.
$$

Choosing different m yields different limits, we conclude that the limit does not exist.

- (b) By part (a), f is discontinuous at $(0, 0)$.
- 4. Determine whether

Z

$$
\int_{-\infty}^{\infty} \frac{1}{x^2 - 1} dx
$$

is convergent.

Consider the function $f(x) = \frac{1}{x^2-1}$. This function becomes infinity at $x = \pm 1$. Write the improper integral as

$$
\int_{-\infty}^{\infty} \frac{dx}{x^2 - 1} = \int_{-\infty}^{-1} \frac{dx}{x^2 - 1} + \int_{-1}^{1} \frac{dx}{x^2 - 1} + \int_{1}^{\infty} \frac{dx}{x^2 - 1}.
$$

Since

$$
\int \frac{dx}{x^2 - 1} = \int \frac{1}{2} \left(\frac{1}{x - 1} - \frac{1}{x + 1} \right) dx = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right|,
$$

it follows that

$$
\lim_{x \to -1} \frac{1}{2} \ln \left| \frac{x-1}{x+1} \right| = +\infty, \quad \lim_{x \to 1} \frac{1}{2} \ln \left| \frac{x-1}{x+1} \right| = -\infty.
$$

Hence the improper integral is divergent.

5. Find the absolute maxima and minima of $f(x, y) = x^2 + y^2 + x + 2y$ on the disk $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 4\}.$

The gradient is

$$
\nabla f(x,y) = \begin{bmatrix} 2x+1\\2y+2 \end{bmatrix}
$$

The critical point inside of D is $(-1/2, -1)$. The Hessian matrix of f is

$$
\mathbf{Hess}(f)(x,y) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
$$

which implies that f has a local minimum $f(-1/2,-1) = -5/4$ at the point $-(-1/2,-1)$.

We next consider the boundary of D. Let $g(x, y) = x^2 + y^2 - 4$. Then we should consider the extrema problem with constraint:

 $f(x, y) = x^2 + y^2 + x + 2y$ with $g(x, y) = 0$.

From the equation $\nabla f(x, y) = \lambda \nabla g(x, y)$, we see that if $f(x, y)$ has an extremum at (x_0, y_0) then

$$
2x + 1 = 2\lambda x, \quad 2y + 2 = 2\lambda y, \quad x^2 + y^2 = 4.
$$

The first two equations gives us $x = 1/(2\lambda - 2)$ and $y = 2/(2\lambda - 2)$; substituting them into the third one, we arrive at √

$$
\frac{1}{(2\lambda - 2)^2} + \frac{4}{(2\lambda - 2)^2} = 4 \Longrightarrow \lambda = 1 + \frac{\sqrt{5}}{4}.
$$

Hence $x = 1/$ √ 5 and $y = 4/$ 5, with $f(2)$ $5, 4/$ $\sqrt{5}$) = 4 + 2 $\sqrt{5}$. nce $x = 1/\sqrt{3}$ and $y = 4/\sqrt{3}$, with $f(2/\sqrt{3}, 4/\sqrt{3}) = 4 + 2\sqrt{3}$.
The absolute maxima is $4 + 2\sqrt{5}$ and the absolute minima is -5/4.

6. Use the partial-fraction method to solve

$$
\frac{dy}{dt} = \frac{1}{2}y^2 - 2y
$$

with $y(0) = -3$.

Compute

$$
\frac{1}{2}dt = \frac{dy}{y(y-4)} = \frac{1}{4}\left(\frac{1}{y-4} - \frac{1}{y}\right)dy.
$$

$$
\frac{1}{y-4} \begin{vmatrix} y-4 & 1 \\ 1 & y \end{vmatrix} = \frac{1}{4}\left(\frac{1}{y-4} - \frac{1}{y}\right)dy.
$$

Hence

$$
\frac{1}{4}\ln\left|\frac{y-4}{y}\right| = \frac{1}{2}x + C_1 \Longrightarrow \frac{y-4}{y} = Ce^{2x}.
$$

Since $y(0) = -3$, we get $C = 7/3$ and then $y = 4/(1 - \frac{7}{3}e^{2x})$.

7. Find and classify the critical points of

$$
f(x, y) = x3 - 4xy + y
$$
, $(x, y) \in \mathbb{R}2$.

Compute

$$
\nabla f(x,y) = \begin{bmatrix} 3x^2 - 4y \\ -4x + 1 \end{bmatrix}, \quad \mathbf{Hess}(f)(x,y) = \begin{bmatrix} 6x & -4 \\ -4 & 0 \end{bmatrix}
$$

The only critical point is $(1/4, 3/64)$. Since det **Hess** $(f)(x, y) = -16 < 0$ for any points (x, y) , it follows that $(1/4, 3/64)$ is a saddle point.

8. Compute the directional derivative of $f(x, y) = ye^{x^2}$ at $(0, 2)$ in the direction \lceil 4] −1 .

The gradient of f is

$$
\nabla f(x,y) = \begin{bmatrix} 2xy e^{x^2} \\ e^{x^2} \end{bmatrix} \Longrightarrow \nabla f(0,2) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

The normalization of
$$
\begin{bmatrix} 4 \\ -1 \end{bmatrix}
$$
 is given by
\n
$$
\mathbf{u} = \frac{1}{\left| \begin{bmatrix} 4 \\ -1 \end{bmatrix} \right|} \begin{bmatrix} 4 \\ -1 \end{bmatrix} = \frac{1}{\sqrt{17}} \begin{bmatrix} 4 \\ -1 \end{bmatrix}
$$
\nThen $D_{\mathbf{u}}f(0, 2) = \nabla f(0, 2) \cdot \mathbf{u} = -1/\sqrt{17}$.

9. Consider the following system of differential equations

$$
\begin{bmatrix} \frac{dx_1}{dt} \\ \frac{dx_2}{dt} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}
$$

(a) Show that

$$
A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
$$

has the repeated eigenvalues $\lambda_1 = \lambda_2 = 1$.

(b) Show that $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ 0 $\Big]$ and $\Big[\begin{matrix} 0 \\ 1 \end{matrix} \Big]$ 1 are eigenvectors of A and that any vector $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ $\overline{c_2}$ \vert can be written as

$$
\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

(c) Show that

$$
\mathbf{x}(t) = c_1 e^t \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c_2 e^t \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

is a solution of the above system that satisfies the initial condition $x_1(0) = c_1$ and $x_2(0) = c_2.$

(a) det $A = 1$ and tr $A = 2$. Hence

$$
0 = \lambda^2 - 2\lambda + 1 \Longrightarrow \lambda_1 = \lambda_2 = 1.
$$

(b) Since

$$
(A - I_2) \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 0 = (A - I_2) \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

we verify the first part. The second part is obvious.

(c) By (b), we can rewrite $\mathbf{x}(t)$ as

$$
\mathbf{x}(t) = e^t \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}
$$

then $x_1(0) = c_1$ and $x_2(0) = c_2$. Since any linear combination of two solutions is also a solution, $x(t)$ satisfies the above system.

10. Suppose that

$$
\frac{dy}{dx} = (4 - y)(5 - y).
$$

(a) Find the equilibria of this differential equation.

(b) Compute the eigenvalues associated with each equilibrium and discuss the stability of the equilibria.

Let $g(y) = (4 - y)(5 - y) = y^2 - 9y + 20$. Then $g'(y) = 2y - 9$. (a) Two equilibria are $y = 4$ and $y = 5$. (b) Since $g'(4) = -1 < 0$ and $g'(5) = 1 > 0$, it follows that the equilibrium 4 is locally stable while 5 is unstable.

Department of Mathematics, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD 21218, USA

E-mail address: yli@math.jhu.edu