
1. [25pts] Let f(x, y) = ln(x− y2).

(a) Find the domain and range of f(x, y).

Since the domain of ln(t) is all values of t > 0, we have:

Domain = {(x, y) ∈ R2 : x− y2 > 0}
= {(x, y) ∈ R2 : x > y2}

While it wasn’t necessary to sketch the domain in the xy-plane, here is
a diagram showing the region. Note, the domain is shaded in blue, with an
open (dashed) boundary, since ln is undefined for zero.

For the range, note that when y = 0, we have f(x, 0) = ln(x), and since
(x, 0) is in our domain for all positive values of x, we must have that the



range of f(x, y) is the same as the range of ln(x). That is:

Range = {c ∈ R : −∞ < c <∞},
i.e. the interval (−∞,∞).

(b) Determine the equations of the level curves f(x, y) = c to-
gether with possible values of c.

The possible values of c are exactly the values in the range. Hence −∞ <
c <∞. Setting f(x, y) = c gives us:

ln(x− y2) = c

x− y2 = ec

x = y2 + ec

Since 0 < ec < ∞ for −∞ < c < ∞, then the level curves are exactly
copies of the (sideways) parabola x = y2, shifted to the right by the positive
value ec.

(c) Find a unit vector ~u which is perpendicular to the level curve
of f(x, y) passing through the point (4, 1).

The gradient vector ∇f(x0, y0) will always be perpendicular to the level
curve that passes through the point (x0, y0):

∇f(4, 1) =

(
∂f

∂x
,
∂f

∂y

) ∣∣∣∣∣
(4,1)

=

(
1

x− y2
,
−2y

x− y2

) ∣∣∣∣∣
(4,1)

= (1/3,−2/3).

Hence a unit vector in the same direction as ∇f(x, y) will also be per-
pendicular to the level curve through (4, 1):

~u =
∇f(4, 1)

||∇f(4, 1)||

=
3√
5

(1/3,−2/3) =
1√
5

(1,−2)



2. [20 points] Let f(x, y) = ex
2

sin(xy) be a function of two vari-
ables.

(a) Find the linearization of f(x, y) at the point (1, 0).

f(1, 0) = 0

∂f

∂x

∣∣∣∣∣
(1,0)

= 2xex
2

sin(xy) + ex
2

y cos(xy)
∣∣∣
(1,0)

= ex
2

(2x sin(xy) + y cos(xy))
∣∣∣
(1,0)

= 0

∂f

∂y

∣∣∣∣∣
(1,0)

= xex
2

cos(xy)
∣∣∣
(1,0)

= e

Hence the linearization of f(x, y) at (1, 0) is:

L(x, y) = f(1, 0) +
∂f

∂x

∣∣∣∣∣
(1,0)

(x− 1) +
∂f

∂y

∣∣∣∣∣
(1,0)

(y − 0)

= 0 + (0)(x− 1) + (e)(y − 0)

= ey

(b) Use your answer in part (a) to approximate f(1.1,−0.05).

f(1.1,−0.05) ≈ L(1.1,−0.05)

= −0.05e,

which is about 2.718×−0.05 = −0.1359. (The actual value is−0.18434868...).



3. [15 points] Let w = sin(f(x, y)) be a function of x, y and
x = u(t), y = v(t) be functions of t. Find dw

dt
in terms of f, ∂f

∂x
, ∂f
∂y
, u, v, u′, v′.

dw

dt
=

d

dt
sin(f(u(t), v(t)))

= cos(f(u(t), v(t)))
d

dt
f(u(t), v(t))

= cos(f(u(t), v(t)))

∂f
∂x

∣∣∣∣∣
(u(t),v(t))

dx

dt
+
∂f

∂y

∣∣∣∣∣
(u(t),v(t))

dy

dt


=
(

cos(f(u(t), v(t)))
)(∂f

∂x
(u(t), v(t)) u′(t) +

∂f

∂y
(u(t), v(t)) v′(t)

)



4. [20 points] Find absolute minimum and maximum of the
function f(x, y) = 12xy− 4x2y− 3xy2 on the triangle bounded by the
x-axis, y-axis and the line 4x+ 3y = 12.

i.

∇f(x, y) = (12y − 8xy − 3y2, 12x− 4x2 − 6xy)

= (y(12− 8x− 3y), x(12− 4x− 6y))

Setting ∇f(x, y) = (0, 0) gives us

y(12− 8x− 3y) = 0

x(12− 4x− 6y) = 0.

The first equation gives us y = 0 or 12 − 8x − 3y = 0. Letting y = 0, and
substituting into the second equation gives us

x(12− 4x− 3(0)) = 0

=⇒ 4x(3− x) = 0

=⇒ x = 0 or x = 3.

Hence (0, 0) and (3, 0) are two critical points (and candidates for minima/maxima).
Letting 12−8x−3y = 0 gives us y = 4− 8

3
x. Substituting into the second

equation gives us

x(12− 4x− 6(4− 8
3
x)) = 0

=⇒ 12x(x− 1) = 0

=⇒ x = 0 or x = 1

=⇒ y = 4 or y = 4
3
.

Hence (0, 4) and (1, 4
3
) are two critical points (and candidates for max-

ima/minima).

ii. Along the x-axis we have f(x, y) = f(x, 0), with

f(x, 0) = 12x(0)− 4x2(0)− 3x(0)2

= 0.



Hence d
dx
f(x, 0) = 0 everywhere along the x-axis, and so all points (x, 0) are

critical points along the boundary (and candidates for maxima/minima).

Along the y-axis we have f(x, y) = f(0, y), with

f(0, y) = 12(0)y − 4(0)2y − 3(0)y2

= 0.

Hence d
dy
f(0, y) = 0 everywhere along the y-axis, and so all points (0, y) are

critical points along the boundary (and candidates for maxima/minima).

Along the line 4x+3y = 12 we have y = 4− 4
3
x, and f(x, y) = f(x, 4− 4

3
x),

with

f(x, 4− 4
3
x) = 12x(4− 4

3
x)− 4x2(4− 4

3
x)− 3x(4− 4

3
x)2

= 0.

Hence d
dx
f(x, 4− 4

3
x) = 0 everywhere along the line 4x+ 3y = 12, and so all

points (x, 4− 4
3
x) are critical points along the boundary (and candidates for

maxima/minima).

iii. Finally, we must test all the critical points both in the domain and
along the boundary:

f(0, 0) = 0

f(3, 0) = 0

f(0, 4) = 0

f(1, 4
3
) = 16

3

f(x, 0) = 0

f(0, y) = 0

f(x, 4− 4
3
x) = 0

Hence there is an absolute maximum of 16
3

at the point (1, 4
3
), and an absolute

minimum of 0 along the entire boundary.



5. [20 points] Given the system

dx

dt
= 2x+ y

dy

dt
= 2y

(a) Write the system in the matrix form d~x
dt

= A~x(t) Find all eigen-
values and corresponding eigenvectors of A.


dx

dt

dy

dt

 =

[
2 1
0 2

] [
x
y

]

det(A− λI) = det

[
2− λ 1

0 2− λ

]
= (2− λ)2 = 0

Hence λ = 2 is the only eigenvalue of A. To find the corresponding
eigenvector, [

2 1
0 2

] [
u1
u2

]
= 2

[
u1
u2

]
=⇒ 2u1 + u2 = 2u1

=⇒ u2 = 0.

Hence

[
1
0

]
is an eigenvector corresponding to the eigenvalue 2.

(b) Show that ~x(t) = e2t
[

0
1

]
+ te2t

[
1
0

]
is solution of the system.

e2t
[

0
1

]
+ te2t

[
1
0

]
=

[
te2t

e2t

]



Hence

d~x

dt
=


dx1
dt

dx2
dt

 =

e2t + t(2e2t)

2e2t



=

[
2 1
0 2

]te2t
e2t


=

[
2 1
0 2

]x(t)

y(t)

 .
Hence this is indeed a solution of the (matrix) differential equation.


