Exam \#2, Dec. 7, Fall 1999, Calculus II (Eng) 110.109, W. Stephen Wilson No books, no calculators, no crib sheets, show all work!

Name: \qquad

0 . (2 points, 1 point for recognizability and 1 for last name spelled correctly)

TA Name:

1. (3 points) Calculate the n-th Taylor polynomial for e^{x}.
2. (3 points) What is the remainder term for problem (1)?
3. (3 points) Calculate the Taylor series for e^{x} ?
4. (3 points) Show the Taylor series for e^{x} in (3) converges for all x.
5. (3 points) Show that the limit of x^{n} / n ! as n goes to infinity is zero for arbitrary x.
6. (3 points) Show the Taylor series for e^{x} in (3) converges to e^{x} for all x.
7. (3 points) What is $p_{3}(x)$ for e^{x} ?
8. (3 points) Estimate $e^{3 / 10}$ using $p_{3}(x)$. Use 4 decimal places.
9. (3 points) What is the remainder $e^{x}-p_{3}(x)$?
10. (3 points) Find a bound on the remainder in (8) when $x=.3$. Assume that you know $e^{.3}$ is less than 1.5. Use 4 decimal places.
11. (3 points) Trap $e^{3}=e^{3 / 10}$ between two numbers using the above and 4 decimal places. (Note: $e^{.3}=1.349858808 \ldots$.
12. (3 points) Let $f(x)$ be a function with $f(1)=1, f^{\prime}(1)=2, f^{\prime \prime}(1)=2$, and $f^{(k)}(1)=0$, $k>2$. What is the Taylor series for this function at $a=1$?
13. (3 points) Simplify the function in (12).
14. (3 points) Let $f(x)=\sum_{n>0}(-1)^{n+1} \frac{x^{n}}{n^{2} n!}$. Show this converges for all x.
15. (3 points) What is $p_{3}(x)$ for the function in (14)?
16. (3 points) Evaluate $p_{3}(.2)$ in (15). Use 6 decimals.
17. (3 points) Get an estimate on $f(.2)-p_{3}(.2)$ for the function of (14-16). Use 6 decimals.
18. (3 points) Trap the function, $f(.2)$ (of $14-17$), using $p_{3}(.2)$ and the above remainder. Use 6 decimals. (Hint: $f(.2)=.195144057 \ldots$..)
19. (3 points) Let $f(x)=\sum_{n>0} \frac{x^{n}}{n^{2} n!}$. Assume this converges for all x. Use $p_{1}(x)$ to approximate $f(.3)$.
20. (3 points) Get a bound on $f(x)-p_{1}(x)$ for $x=.3$ for $f(x)$ in (19). Use 4 decimals.
21. (3 points) For the $f(x)$ in (19-20), trap $f(.3)$ between two numbers using the above. Use 4 decimals. (Hint: $f(.3)=.3117 \ldots$...)
